These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


288 related items for PubMed ID: 9151688

  • 1. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells.
    Protasi F, Franzini-Armstrong C, Flucher BE.
    J Cell Biol; 1997 May 19; 137(4):859-70. PubMed ID: 9151688
    [Abstract] [Full Text] [Related]

  • 2. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle.
    Sun XH, Protasi F, Takahashi M, Takeshima H, Ferguson DG, Franzini-Armstrong C.
    J Cell Biol; 1995 May 19; 129(3):659-71. PubMed ID: 7730402
    [Abstract] [Full Text] [Related]

  • 3. Role of ryanodine receptors in the assembly of calcium release units in skeletal muscle.
    Protasi F, Franzini-Armstrong C, Allen PD.
    J Cell Biol; 1998 Feb 23; 140(4):831-42. PubMed ID: 9472035
    [Abstract] [Full Text] [Related]

  • 4. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle.
    Franzini-Armstrong C, Protasi F, Ramesh V.
    Ann N Y Acad Sci; 1998 Sep 16; 853():20-30. PubMed ID: 10603933
    [Abstract] [Full Text] [Related]

  • 5. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle.
    Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, Franzini-Armstrong C.
    Biophys J; 2000 Nov 16; 79(5):2494-508. PubMed ID: 11053125
    [Abstract] [Full Text] [Related]

  • 6. Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine receptor.
    Takekura H, Nishi M, Noda T, Takeshima H, Franzini-Armstrong C.
    Proc Natl Acad Sci U S A; 1995 Apr 11; 92(8):3381-5. PubMed ID: 7724570
    [Abstract] [Full Text] [Related]

  • 7. Alternate disposition of tetrads in peripheral couplings of skeletal muscle.
    Franzini-Armstrong C, Kish JW.
    J Muscle Res Cell Motil; 1995 Jun 11; 16(3):319-24. PubMed ID: 7560004
    [Abstract] [Full Text] [Related]

  • 8. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H, Takeshima H, Nishimura S, Takahashi M, Tanabe T, Flockerzi V, Hofmann F, Franzini-Armstrong C.
    J Muscle Res Cell Motil; 1995 Oct 11; 16(5):465-80. PubMed ID: 8567934
    [Abstract] [Full Text] [Related]

  • 9. The relative position of RyR feet and DHPR tetrads in skeletal muscle.
    Paolini C, Protasi F, Franzini-Armstrong C.
    J Mol Biol; 2004 Sep 03; 342(1):145-53. PubMed ID: 15313613
    [Abstract] [Full Text] [Related]

  • 10. Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo.
    Takekura H, Franzini-Armstrong C.
    Dev Dyn; 1999 Apr 03; 214(4):372-80. PubMed ID: 10213392
    [Abstract] [Full Text] [Related]

  • 11. Formation and maturation of the calcium release apparatus in developing and adult avian myocardium.
    Protasi F, Sun XH, Franzini-Armstrong C.
    Dev Biol; 1996 Jan 10; 173(1):265-78. PubMed ID: 8575628
    [Abstract] [Full Text] [Related]

  • 12. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro.
    Flucher BE, Andrews SB, Fleischer S, Marks AR, Caswell A, Powell JA.
    J Cell Biol; 1993 Dec 10; 123(5):1161-74. PubMed ID: 8245124
    [Abstract] [Full Text] [Related]

  • 13. Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle.
    Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD.
    Biophys J; 2002 Dec 10; 83(6):3230-44. PubMed ID: 12496092
    [Abstract] [Full Text] [Related]

  • 14. Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle.
    Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE.
    Mol Biol Cell; 2004 Dec 10; 15(12):5408-19. PubMed ID: 15385628
    [Abstract] [Full Text] [Related]

  • 15. Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder.
    Moore ED, Voigt T, Kobayashi YM, Isenberg G, Fay FS, Gallitelli MF, Franzini-Armstrong C.
    Biophys J; 2004 Sep 10; 87(3):1836-47. PubMed ID: 15345562
    [Abstract] [Full Text] [Related]

  • 16. Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells.
    Protasi F.
    Front Biosci; 2002 Mar 01; 7():d650-8. PubMed ID: 11861217
    [Abstract] [Full Text] [Related]

  • 17. The foundation of excitation-contraction coupling in skeletal muscle: communication between the transverse tubules and sarcoplasmic reticulum.
    Rall JA.
    Adv Physiol Educ; 2024 Dec 01; 48(4):759-769. PubMed ID: 39116389
    [Abstract] [Full Text] [Related]

  • 18. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle.
    Felder E, Protasi F, Hirsch R, Franzini-Armstrong C, Allen PD.
    Biophys J; 2002 Jun 01; 82(6):3144-9. PubMed ID: 12023238
    [Abstract] [Full Text] [Related]

  • 19. Molecular organization of transverse tubule/sarcoplasmic reticulum junctions during development of excitation-contraction coupling in skeletal muscle.
    Flucher BE, Andrews SB, Daniels MP.
    Mol Biol Cell; 1994 Oct 01; 5(10):1105-18. PubMed ID: 7865878
    [Abstract] [Full Text] [Related]

  • 20. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions.
    Franzini-Armstrong C, Protasi F.
    Physiol Rev; 1997 Jul 01; 77(3):699-729. PubMed ID: 9234963
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.