These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
157 related items for PubMed ID: 9154932
21. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y, Kawanabe A, Jung KH, Kandori H. Biochemistry; 2005 Sep 20; 44(37):12287-96. PubMed ID: 16156642 [Abstract] [Full Text] [Related]
22. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS, Coleman M, Rath P, Nilsson A, Rothschild KJ. Biochemistry; 1997 Jun 17; 36(24):7490-7. PubMed ID: 9200698 [Abstract] [Full Text] [Related]
24. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle. Weidlich O, Schalt B, Friedman N, Sheves M, Lanyi JK, Brown LS, Siebert F. Biochemistry; 1996 Aug 20; 35(33):10807-14. PubMed ID: 8718872 [Abstract] [Full Text] [Related]
31. Fourier transform Raman spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: formation of a stable O-like species during light adaptation and detection of its transient N-like photoproduct. Rath P, Krebs MP, He Y, Khorana HG, Rothschild KJ. Biochemistry; 1993 Mar 09; 32(9):2272-81. PubMed ID: 8443170 [Abstract] [Full Text] [Related]
32. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M, Ihara K, Kandori H. Biochemistry; 2006 Sep 05; 45(35):10633-40. PubMed ID: 16939215 [Abstract] [Full Text] [Related]
33. Water molecules in the schiff base region of bacteriorhodopsin. Shibata M, Tanimoto T, Kandori H. J Am Chem Soc; 2003 Nov 05; 125(44):13312-3. PubMed ID: 14582999 [Abstract] [Full Text] [Related]
34. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy. Lórenz-Fonfría VA, Furutani Y, Kandori H. Biochemistry; 2008 Apr 01; 47(13):4071-81. PubMed ID: 18321068 [Abstract] [Full Text] [Related]
35. Protein conformational changes in the bacteriorhodopsin photocycle. Subramaniam S, Lindahl M, Bullough P, Faruqi AR, Tittor J, Oesterhelt D, Brown L, Lanyi J, Henderson R. J Mol Biol; 1999 Mar 19; 287(1):145-61. PubMed ID: 10074413 [Abstract] [Full Text] [Related]
36. Effects of arginine-82 on the interactions of internal water molecules in bacteriorhodopsin. Hatanaka M, Sasaki J, Kandori H, Ebrey TG, Needleman R, Lanyi JK, Maeda A. Biochemistry; 1996 May 21; 35(20):6308-12. PubMed ID: 8639574 [Abstract] [Full Text] [Related]
38. Time-resolved fourier transform infrared study of structural changes in the last steps of the photocycles of Glu-204 and Leu-93 mutants of bacteriorhodopsin. Kandori H, Yamazaki Y, Hatanaka M, Needleman R, Brown LS, Richter HT, Lanyi JK, Maeda A. Biochemistry; 1997 Apr 29; 36(17):5134-41. PubMed ID: 9136874 [Abstract] [Full Text] [Related]
39. FTIR studies of the photoactivation processes in squid retinochrome. Furutani Y, Terakita A, Shichida Y, Kandori H. Biochemistry; 2005 Jun 07; 44(22):7988-97. PubMed ID: 15924417 [Abstract] [Full Text] [Related]