These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
184 related items for PubMed ID: 9157492
41. Oenococcus kitaharae sp. nov., a non-acidophilic and non-malolactic-fermenting oenococcus isolated from a composting distilled shochu residue. Endo A, Okada S. Int J Syst Evol Microbiol; 2006 Oct; 56(Pt 10):2345-2348. PubMed ID: 17012559 [Abstract] [Full Text] [Related]
42. Malolactic fermentation and secondary metabolite production by Oenoccocus oeni strains in low pH wines. Ruiz P, Izquierdo PM, Seseña S, García E, Palop ML. J Food Sci; 2012 Oct; 77(10):M579-85. PubMed ID: 22924897 [Abstract] [Full Text] [Related]
43. Lowering histamine formation in a red Ribera del Duero wine (Spain) by using an indigenous O. oeni strain as a malolactic starter. Berbegal C, Benavent-Gil Y, Navascués E, Calvo A, Albors C, Pardo I, Ferrer S. Int J Food Microbiol; 2017 Mar 06; 244():11-18. PubMed ID: 28061327 [Abstract] [Full Text] [Related]
44. Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Larisika M, Claus H, König H. Int J Food Microbiol; 2008 Mar 31; 123(1-2):171-6. PubMed ID: 18207599 [Abstract] [Full Text] [Related]
45. Oenococcus oeni in Chilean Red Wines: Technological and Genomic Characterization. Romero J, Ilabaca C, Ruiz M, Jara C. Front Microbiol; 2018 Mar 31; 9():90. PubMed ID: 29491847 [Abstract] [Full Text] [Related]
46. Studies on the large subunit rRNA genes and their flanking regions of Leuconostocs. Nour M. Can J Microbiol; 1998 Sep 31; 44(9):807-18. PubMed ID: 9851024 [Abstract] [Full Text] [Related]
47. RNA fingerprinting analysis of Oenococcus oeni strains under wine conditions. Marques AP, San Romão MV, Tenreiro R. Food Microbiol; 2012 Sep 31; 31(2):238-45. PubMed ID: 22608229 [Abstract] [Full Text] [Related]
48. High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Lucas PM, Claisse O, Lonvaud-Funel A. Appl Environ Microbiol; 2008 Feb 31; 74(3):811-7. PubMed ID: 18065614 [Abstract] [Full Text] [Related]
49. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines. Campbell-Sills H, El Khoury M, Favier M, Romano A, Biasioli F, Spano G, Sherman DJ, Bouchez O, Coton E, Coton M, Okada S, Tanaka N, Dols-Lafargue M, Lucas PM. Genome Biol Evol; 2015 May 14; 7(6):1506-18. PubMed ID: 25977455 [Abstract] [Full Text] [Related]
50. Conjugative plasmid pIP501 undergoes specific deletions after transfer from Lactococcus lactis to Oenococcus oeni. Zúñiga M, Pardo I, Ferrer S. Arch Microbiol; 2003 Nov 14; 180(5):367-73. PubMed ID: 14504693 [Abstract] [Full Text] [Related]
51. Restriction fragment length polymorphism analysis of 16S rRNA genes in lactic acid bacteria isolated from red wine. Sato H, Yanagida F, Shinohara T, Yokotsuka K. J Biosci Bioeng; 2000 Nov 14; 90(3):335-7. PubMed ID: 16232866 [Abstract] [Full Text] [Related]
52. Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains. Vigentini I, Praz A, Domeneghetti D, Zenato S, Picozzi C, Barmaz A, Foschino R. J Appl Microbiol; 2016 Apr 14; 120(4):934-45. PubMed ID: 26820246 [Abstract] [Full Text] [Related]
53. Role of hypermutability in the evolution of the genus Oenococcus. Marcobal AM, Sela DA, Wolf YI, Makarova KS, Mills DA. J Bacteriol; 2008 Jan 14; 190(2):564-70. PubMed ID: 17993526 [Abstract] [Full Text] [Related]
54. rpoB gene: a target for identification of LAB cocci by PCR-DGGE and melting curves analyses in real time PCR. Renouf V, Claisse O, Lonvaud-Funel A. J Microbiol Methods; 2006 Oct 14; 67(1):162-70. PubMed ID: 16626824 [Abstract] [Full Text] [Related]
55. Growth and metabolism of Oenococcus oeni for malolactic fermentation under pressure. Neto R, Mota MJ, Lopes RP, Delgadillo I, Saraiva JA. Lett Appl Microbiol; 2016 Dec 14; 63(6):426-433. PubMed ID: 27581841 [Abstract] [Full Text] [Related]
56. Phage-host interactions analysis of newly characterized Oenococcus oeni bacteriophages: Implications for malolactic fermentation in wine. Costantini A, Doria F, Saiz JC, Garcia-Moruno E. Int J Food Microbiol; 2017 Apr 04; 246():12-19. PubMed ID: 28189899 [Abstract] [Full Text] [Related]
57. Genomic diversity of Oenococcus oeni from different winemaking regions of Portugal. Marques AP, Duarte AJ, Chambel L, Teixeira MF, San Romão MV, Tenreiro R. Int Microbiol; 2011 Sep 04; 14(3):155-62. PubMed ID: 22101413 [Abstract] [Full Text] [Related]
58. Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains. Lorentzen MP, Campbell-Sills H, Jorgensen TS, Nielsen TK, Coton M, Coton E, Hansen L, Lucas PM. BMC Genomics; 2019 May 02; 20(1):330. PubMed ID: 31046679 [Abstract] [Full Text] [Related]
59. Effect of beta-glycosidase activity of Oenococcus oeni on the glycosylated flavor precursors of Tannat wine during malolactic fermentation. Boido E, Lloret A, Medina K, Carrau F, Dellacassa E. J Agric Food Chem; 2002 Apr 10; 50(8):2344-9. PubMed ID: 11929295 [Abstract] [Full Text] [Related]
60. Fast protocols for the 5S rDNA and ITS-2 based identification of Oenococcus oeni. Hirschhäuser S, Fröhlich J, Gneipel A, Schönig I, König H. FEMS Microbiol Lett; 2005 Mar 01; 244(1):165-71. PubMed ID: 15727836 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]