These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 9159485
1. The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. Lillemoen J, Cameron CS, Hoffman DW. J Mol Biol; 1997 May 02; 268(2):482-93. PubMed ID: 9159485 [Abstract] [Full Text] [Related]
2. Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. Hoffman DW, Cameron CS, Davies C, White SW, Ramakrishnan V. J Mol Biol; 1996 Dec 20; 264(5):1058-71. PubMed ID: 9000630 [Abstract] [Full Text] [Related]
3. An investigation of the dynamics of ribosomal protein L9 using heteronuclear NMR relaxation measurements. Lillemoen J, Hoffman DW. J Mol Biol; 1998 Aug 21; 281(3):539-51. PubMed ID: 9698568 [Abstract] [Full Text] [Related]
4. An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. Kuhlman B, Yang HY, Boice JA, Fairman R, Raleigh DP. J Mol Biol; 1997 Aug 01; 270(5):640-7. PubMed ID: 9245593 [Abstract] [Full Text] [Related]
5. The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23 S rRNA. Hinck AP, Markus MA, Huang S, Grzesiek S, Kustonovich I, Draper DE, Torchia DA. J Mol Biol; 1997 Nov 21; 274(1):101-13. PubMed ID: 9398519 [Abstract] [Full Text] [Related]
6. Amide proton exchange measurements as a probe of the stability and dynamics of the N-terminal domain of the ribosomal protein L9: comparison with the intact protein. Vugmeyster L, Kuhlman B, Raleigh DP. Protein Sci; 1998 Sep 21; 7(9):1994-7. PubMed ID: 9761480 [Abstract] [Full Text] [Related]
7. Conformational analysis of a set of peptides corresponding to the entire primary sequence of the N-terminal domain of the ribosomal protein L9: evidence for stable native-like secondary structure in the unfolded state. Luisi DL, Wu WJ, Raleigh DP. J Mol Biol; 1999 Mar 26; 287(2):395-407. PubMed ID: 10080901 [Abstract] [Full Text] [Related]
8. On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. Sato S, Xiang S, Raleigh DP. J Mol Biol; 2001 Sep 21; 312(3):569-77. PubMed ID: 11563917 [Abstract] [Full Text] [Related]
9. Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding. Kuhlman B, Boice JA, Fairman R, Raleigh DP. Biochemistry; 1998 Jan 27; 37(4):1025-32. PubMed ID: 9454593 [Abstract] [Full Text] [Related]
10. On the global architecture of initiation factor IF3: a comparative study of the linker regions from the Escherichia coli protein and the Bacillus stearothermophilus protein. Hua Y, Raleigh DP. J Mol Biol; 1998 May 15; 278(4):871-8. PubMed ID: 9614948 [Abstract] [Full Text] [Related]
11. The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, Atkins JF, Gesteland RF, Noller HF. J Mol Biol; 2000 Apr 14; 297(5):1129-43. PubMed ID: 10764578 [Abstract] [Full Text] [Related]
12. Protein-RNA sequence covariation in a ribosomal protein-rRNA complex. GuhaThakurta D, Draper DE. Biochemistry; 1999 Mar 23; 38(12):3633-40. PubMed ID: 10090750 [Abstract] [Full Text] [Related]
13. Local folding coupled to RNA binding in the yeast ribosomal protein L30. Mao H, Williamson JR. J Mol Biol; 1999 Sep 17; 292(2):345-59. PubMed ID: 10493880 [Abstract] [Full Text] [Related]
14. Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization. Benison G, Nyarko A, Barbar E. J Mol Biol; 2006 Oct 06; 362(5):1082-93. PubMed ID: 16949604 [Abstract] [Full Text] [Related]
15. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. Fieber W, Schneider ML, Matt T, Kräutler B, Konrat R, Bister K. J Mol Biol; 2001 Apr 13; 307(5):1395-410. PubMed ID: 11292350 [Abstract] [Full Text] [Related]
16. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site. Nevskaya N, Tishchenko S, Nikulin A, al-Karadaghi S, Liljas A, Ehresmann B, Ehresmann C, Garber M, Nikonov S. J Mol Biol; 1998 May 29; 279(1):233-44. PubMed ID: 9636713 [Abstract] [Full Text] [Related]
17. Folding of the multidomain ribosomal protein L9: the two domains fold independently with remarkably different rates. Sato S, Kuhlman B, Wu WJ, Raleigh DP. Biochemistry; 1999 Apr 27; 38(17):5643-50. PubMed ID: 10220353 [Abstract] [Full Text] [Related]
18. Mapping the ribosomal RNA neighborhood of protein L11 by directed hydroxyl radical probing. Holmberg L, Noller HF. J Mol Biol; 1999 Jun 04; 289(2):223-33. PubMed ID: 10366501 [Abstract] [Full Text] [Related]
19. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9. Evans SP, Bycroft M. J Mol Biol; 1999 Aug 20; 291(3):661-9. PubMed ID: 10448044 [Abstract] [Full Text] [Related]
20. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Jaishree TN, Ramakrishnan V, White SW. Biochemistry; 1996 Mar 05; 35(9):2845-53. PubMed ID: 8608120 [Abstract] [Full Text] [Related] Page: [Next] [New Search]