These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 9162944

  • 1. Hydrophilicity of cavities in proteins.
    Zhang L, Hermans J.
    Proteins; 1996 Apr; 24(4):433-8. PubMed ID: 9162944
    [Abstract] [Full Text] [Related]

  • 2. A molecular dynamics study of thermodynamic and structural aspects of the hydration of cavities in proteins.
    Wade RC, Mazor MH, McCammon JA, Quiocho FA.
    Biopolymers; 1991 Jul; 31(8):919-31. PubMed ID: 1782354
    [Abstract] [Full Text] [Related]

  • 3. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A.
    J Mol Biol; 2006 Apr 21; 358(1):289-309. PubMed ID: 16497327
    [Abstract] [Full Text] [Related]

  • 4. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S, Saven JG.
    Proteins; 2005 Aug 15; 60(3):450-63. PubMed ID: 15937899
    [Abstract] [Full Text] [Related]

  • 5. Entropy of water in the hydration layer of major and minor grooves of DNA.
    Jana B, Pal S, Maiti PK, Lin ST, Hynes JT, Bagchi B.
    J Phys Chem B; 2006 Oct 05; 110(39):19611-8. PubMed ID: 17004828
    [Abstract] [Full Text] [Related]

  • 6. Free energy, entropy, and enthalpy of a water molecule in various protein environments.
    Yu H, Rick SW.
    J Phys Chem B; 2010 Sep 09; 114(35):11552-60. PubMed ID: 20704188
    [Abstract] [Full Text] [Related]

  • 7. On the contribution of water-mediated interactions to protein-complex stability.
    Reichmann D, Phillip Y, Carmi A, Schreiber G.
    Biochemistry; 2008 Jan 22; 47(3):1051-60. PubMed ID: 18161993
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. B3LYP/6-311++G** study of monohydrates of alpha- and beta-D-glucopyranose: hydrogen bonding, stress energies, and effect of hydration on internal coordinates.
    Momany FA, Appell M, Strati G, Willett JL.
    Carbohydr Res; 2004 Feb 25; 339(3):553-67. PubMed ID: 15013392
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT, Matus MH, Jackson VE, Vu TN, Rustad JR, Dixon DA.
    J Phys Chem A; 2008 Oct 16; 112(41):10386-98. PubMed ID: 18816037
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The effect of water displacement on binding thermodynamics: concanavalin A.
    Li Z, Lazaridis T.
    J Phys Chem B; 2005 Jan 13; 109(1):662-70. PubMed ID: 16851059
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Dynamics of water molecules buried in cavities of apolipoprotein E studied by molecular dynamics simulations and continuum electrostatic calculations.
    Prévost M.
    Biopolymers; 2004 Oct 05; 75(2):196-207. PubMed ID: 15356873
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.