These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 9166772

  • 1. Structures of calmodulin and a functional myosin light chain kinase in the activated complex: a neutron scattering study.
    Krueger JK, Olah GA, Rokop SE, Zhi G, Stull JT, Trewhella J.
    Biochemistry; 1997 May 20; 36(20):6017-23. PubMed ID: 9166772
    [Abstract] [Full Text] [Related]

  • 2. Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase.
    Krueger JK, Zhi G, Stull JT, Trewhella J.
    Biochemistry; 1998 Oct 06; 37(40):13997-4004. PubMed ID: 9760234
    [Abstract] [Full Text] [Related]

  • 3. Further insights into calmodulin-myosin light chain kinase interaction from solution scattering and shape restoration.
    Heller WT, Krueger JK, Trewhella J.
    Biochemistry; 2003 Sep 16; 42(36):10579-88. PubMed ID: 12962481
    [Abstract] [Full Text] [Related]

  • 4. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y, Squier TC.
    Biochemistry; 1996 May 28; 35(21):6815-27. PubMed ID: 8639633
    [Abstract] [Full Text] [Related]

  • 5. Solution X-ray scattering data show structural differences among chimeras of yeast and chicken calmodulin: implications for structure and function.
    Yokouchi T, Nogami H, Izumi Y, Yoshino H, Nakashima K, Yazawa M.
    Biochemistry; 2003 Feb 25; 42(7):2195-201. PubMed ID: 12590609
    [Abstract] [Full Text] [Related]

  • 6. Investigating the high affinity and low sequence specificity of calmodulin binding to its targets.
    Afshar M, Caves LS, Guimard L, Hubbard RE, Calas B, Grassy G, Haiech J.
    J Mol Biol; 1994 Dec 16; 244(5):554-71. PubMed ID: 7990140
    [Abstract] [Full Text] [Related]

  • 7. Identification of Mg2+-binding sites and the role of Mg2+ on target recognition by calmodulin.
    Ohki S, Ikura M, Zhang M.
    Biochemistry; 1997 Apr 08; 36(14):4309-16. PubMed ID: 9100027
    [Abstract] [Full Text] [Related]

  • 8. Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: a small-angle scattering study of binding and conformational transitions.
    Krueger JK, Bishop NA, Blumenthal DK, Zhi G, Beckingham K, Stull JT, Trewhella J.
    Biochemistry; 1998 Dec 22; 37(51):17810-7. PubMed ID: 9922147
    [Abstract] [Full Text] [Related]

  • 9. Role of the N-terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin.
    Findlay WA, Gradwell MJ, Bayley PM.
    Protein Sci; 1995 Nov 22; 4(11):2375-82. PubMed ID: 8563635
    [Abstract] [Full Text] [Related]

  • 10. The binding of myristoylated N-terminal nonapeptide from neuro-specific protein CAP-23/NAP-22 to calmodulin does not induce the globular structure observed for the calmodulin-nonmyristylated peptide complex.
    Hayashi N, Izumi Y, Titani K, Matsushima N.
    Protein Sci; 2000 Oct 22; 9(10):1905-13. PubMed ID: 11106163
    [Abstract] [Full Text] [Related]

  • 11. Target-induced conformational adaptation of calmodulin revealed by the crystal structure of a complex with nematode Ca(2+)/calmodulin-dependent kinase kinase peptide.
    Kurokawa H, Osawa M, Kurihara H, Katayama N, Tokumitsu H, Swindells MB, Kainosho M, Ikura M.
    J Mol Biol; 2001 Sep 07; 312(1):59-68. PubMed ID: 11545585
    [Abstract] [Full Text] [Related]

  • 12. Solution X-ray scattering data show structural differences between yeast and vertebrate calmodulin: implications for structure/function.
    Yoshino H, Izumi Y, Sakai K, Takezawa H, Matsuura I, Maekawa H, Yazawa M.
    Biochemistry; 1996 Feb 20; 35(7):2388-93. PubMed ID: 8652581
    [Abstract] [Full Text] [Related]

  • 13. Activation of calcium/calmodulin regulated kinases.
    Wilmann M, Gautel M, Mayans O.
    Cell Mol Biol (Noisy-le-grand); 2000 Jul 20; 46(5):883-94. PubMed ID: 10976872
    [Abstract] [Full Text] [Related]

  • 14. Salt enhances calmodulin-target interaction.
    André I, Kesvatera T, Jönsson B, Linse S.
    Biophys J; 2006 Apr 15; 90(8):2903-10. PubMed ID: 16428276
    [Abstract] [Full Text] [Related]

  • 15. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T, Weljie AM, Vogel HJ.
    Biochemistry; 1998 Mar 03; 37(9):3187-95. PubMed ID: 9485473
    [Abstract] [Full Text] [Related]

  • 16. Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 matrix protein p17.
    Izumi Y, Watanabe H, Watanabe N, Aoyama A, Jinbo Y, Hayashi N.
    Biochemistry; 2008 Jul 08; 47(27):7158-66. PubMed ID: 18553937
    [Abstract] [Full Text] [Related]

  • 17. Analysis of the functional coupling between calmodulin's calcium binding and peptide recognition properties.
    Mirzoeva S, Weigand S, Lukas TJ, Shuvalova L, Anderson WF, Watterson DM.
    Biochemistry; 1999 Mar 30; 38(13):3936-47. PubMed ID: 10194305
    [Abstract] [Full Text] [Related]

  • 18. Chimeras of yeast and chicken calmodulin demonstrate differences in activation mechanisms of target enzymes.
    Nakashima K, Maekawa H, Yazawa M.
    Biochemistry; 1996 Apr 30; 35(17):5602-10. PubMed ID: 8611552
    [Abstract] [Full Text] [Related]

  • 19. Ligand-dependent equilibrium fluctuations of single calmodulin molecules.
    Junker JP, Ziegler F, Rief M.
    Science; 2009 Jan 30; 323(5914):633-7. PubMed ID: 19179531
    [Abstract] [Full Text] [Related]

  • 20. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
    Yuan T, Walsh MP, Sutherland C, Fabian H, Vogel HJ.
    Biochemistry; 1999 Feb 02; 38(5):1446-55. PubMed ID: 9931009
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.