These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
63 related items for PubMed ID: 9172782
1. Expression in Escherichia coli of cytoplasmic portions of the cystic fibrosis transmembrane conductance regulator: apparent bacterial toxicity of peptides containing R-domain sequences. Yike I, Zhang Y, Ye J, Dearborn DG. Protein Expr Purif; 1996 Feb; 7(1):45-50. PubMed ID: 9172782 [Abstract] [Full Text] [Related]
2. Insertion of natural intron 6a-6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination. Boyd AC, Popp F, Michaelis U, Davidson H, Davidson-Smith H, Doherty A, McLachlan G, Porteous DJ, Seeber S. J Gene Med; 1999 Feb; 1(5):312-21. PubMed ID: 10738548 [Abstract] [Full Text] [Related]
3. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Lu NT, Pedersen PL. Arch Biochem Biophys; 2000 Mar 01; 375(1):7-20. PubMed ID: 10683244 [Abstract] [Full Text] [Related]
4. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. Tector M, Hartl FU. EMBO J; 1999 Nov 15; 18(22):6290-8. PubMed ID: 10562541 [Abstract] [Full Text] [Related]
5. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences. Chen M, Zhang JT. Biochemistry; 1999 Apr 27; 38(17):5471-7. PubMed ID: 10220334 [Abstract] [Full Text] [Related]
6. Transmembrane domain of cystic fibrosis transmembrane conductance regulator: design, characterization, and secondary structure of synthetic peptides m1-m6. Wigley WC, Vijayakumar S, Jones JD, Slaughter C, Thomas PJ. Biochemistry; 1998 Jan 20; 37(3):844-53. PubMed ID: 9454574 [Abstract] [Full Text] [Related]
7. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator. Therien AG, Glibowicka M, Deber CM. Protein Expr Purif; 2002 Jun 20; 25(1):81-6. PubMed ID: 12071702 [Abstract] [Full Text] [Related]
8. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation. Massiah MA, Ko YH, Pedersen PL, Mildvan AS. Biochemistry; 1999 Jun 08; 38(23):7453-61. PubMed ID: 10360942 [Abstract] [Full Text] [Related]
9. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Akabas MH. Biochemistry; 1998 Sep 01; 37(35):12233-40. PubMed ID: 9724537 [Abstract] [Full Text] [Related]
10. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations. Choi MY, Cardarelli L, Therien AG, Deber CM. Biochemistry; 2004 Jun 29; 43(25):8077-83. PubMed ID: 15209503 [Abstract] [Full Text] [Related]
11. Definition of a "functional R domain" of the cystic fibrosis transmembrane conductance regulator. Chen JM, Scotet V, Ferec C. Mol Genet Metab; 2000 Jun 29; 71(1-2):245-9. PubMed ID: 11001817 [Abstract] [Full Text] [Related]
13. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin. Wehbi H, Rath A, Glibowicka M, Deber CM. Biochemistry; 2007 Jun 19; 46(24):7099-106. PubMed ID: 17516627 [Abstract] [Full Text] [Related]
14. Expression, purification of human vasostatin120-180 in Escherichia coli, and its anti-angiogenic characterization. Sun QM, Cao L, Fang L, Chen C, Dai J, Chen LL, Hua ZC. Protein Expr Purif; 2005 Feb 19; 39(2):288-95. PubMed ID: 15642481 [Abstract] [Full Text] [Related]
15. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Dabrowski S, Kur J. Protein Expr Purif; 1998 Oct 19; 14(1):131-8. PubMed ID: 9758761 [Abstract] [Full Text] [Related]
16. Amino-terminal charge affects the periplasmic accumulation of recombinant heregulin/EGF hybrids exported using the Escherichia coli alkaline phosphatase signal sequence. Campion SR, Elsasser E, Chung R. Protein Expr Purif; 1997 Aug 19; 10(3):331-9. PubMed ID: 9268680 [Abstract] [Full Text] [Related]
17. Aristolochene synthase: purification, molecular cloning, high-level expression in Escherichia coli, and characterization of the Aspergillus terreus cyclase. Cane DE, Kang I. Arch Biochem Biophys; 2000 Apr 15; 376(2):354-64. PubMed ID: 10775423 [Abstract] [Full Text] [Related]
18. High expression of glycogen-debranching enzyme in Escherichia coli and its competent purification method. Nakayama A, Yamamoto K, Tabata S. Protein Expr Purif; 2000 Jul 15; 19(2):298-303. PubMed ID: 10873545 [Abstract] [Full Text] [Related]
19. Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conductance regulator impede processing or opening of the channel. Seibert FS, Jia Y, Mathews CJ, Hanrahan JW, Riordan JR, Loo TW, Clarke DM. Biochemistry; 1997 Sep 30; 36(39):11966-74. PubMed ID: 9305991 [Abstract] [Full Text] [Related]