These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 9177183

  • 1. Heparin-binding properties of selenium-containing thioredoxin reductase from HeLa cells and human lung adenocarcinoma cells.
    Liu SY, Stadtman TC.
    Proc Natl Acad Sci U S A; 1997 Jun 10; 94(12):6138-41. PubMed ID: 9177183
    [Abstract] [Full Text] [Related]

  • 2. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity.
    Tamura T, Stadtman TC.
    Proc Natl Acad Sci U S A; 1996 Feb 06; 93(3):1006-11. PubMed ID: 8577704
    [Abstract] [Full Text] [Related]

  • 3. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene.
    Gladyshev VN, Jeang KT, Stadtman TC.
    Proc Natl Acad Sci U S A; 1996 Jun 11; 93(12):6146-51. PubMed ID: 8650234
    [Abstract] [Full Text] [Related]

  • 4. Human selenium-dependent thioredoxin reductase from HeLa cells: properties of forms with differing heparin affinities.
    Gorlatov SN, Stadtman TC.
    Arch Biochem Biophys; 1999 Sep 01; 369(1):133-42. PubMed ID: 10462449
    [Abstract] [Full Text] [Related]

  • 5. Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin.
    Gorlatov SN, Stadtman TC.
    Proc Natl Acad Sci U S A; 1998 Jul 21; 95(15):8520-5. PubMed ID: 9671710
    [Abstract] [Full Text] [Related]

  • 6. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue.
    Zhong L, Arnér ES, Ljung J, Aslund F, Holmgren A.
    J Biol Chem; 1998 Apr 10; 273(15):8581-91. PubMed ID: 9535831
    [Abstract] [Full Text] [Related]

  • 7. Overexpression of wild type and SeCys/Cys mutant of human thioredoxin reductase in E. coli: the role of selenocysteine in the catalytic activity.
    Bar-Noy S, Gorlatov SN, Stadtman TC.
    Free Radic Biol Med; 2001 Jan 01; 30(1):51-61. PubMed ID: 11134895
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Evidence for a functional relevance of the selenocysteine residue in mammalian thioredoxin reductase.
    Marcocci L, Flohé L, Packer L.
    Biofactors; 1997 Jan 01; 6(3):351-8. PubMed ID: 9288405
    [Abstract] [Full Text] [Related]

  • 10. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations.
    Zhong L, Holmgren A.
    J Biol Chem; 2000 Jun 16; 275(24):18121-8. PubMed ID: 10849437
    [Abstract] [Full Text] [Related]

  • 11. Selenocysteine-containing thioredoxin reductase in C. elegans.
    Gladyshev VN, Krause M, Xu XM, Korotkov KV, Kryukov GV, Sun QA, Lee BJ, Wootton JC, Hatfield DL.
    Biochem Biophys Res Commun; 1999 Jun 07; 259(2):244-9. PubMed ID: 10362494
    [Abstract] [Full Text] [Related]

  • 12. Identification and conformer analysis of a novel redox-active motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila thioredoxin reductase by semiempirical molecular orbital calculation.
    Kuwahara M, Tamura T, Kawamura K, Inagaki K.
    Biosci Biotechnol Biochem; 2011 Jun 07; 75(3):516-21. PubMed ID: 21389620
    [Abstract] [Full Text] [Related]

  • 13. Characterization of Deinococcus radiophilus thioredoxin reductase active with both NADH and NADPH.
    Seo HJ, Lee YN.
    J Microbiol; 2010 Oct 07; 48(5):637-43. PubMed ID: 21046342
    [Abstract] [Full Text] [Related]

  • 14. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G, Krishna TS, Williams CH, Kuriyan J.
    J Mol Biol; 1994 Feb 25; 236(3):800-16. PubMed ID: 8114095
    [Abstract] [Full Text] [Related]

  • 15. Antioxidant function of thioredoxin and glutaredoxin systems.
    Holmgren A.
    Antioxid Redox Signal; 2000 Feb 25; 2(4):811-20. PubMed ID: 11213485
    [Abstract] [Full Text] [Related]

  • 16. Roles of N-terminal active cysteines and C-terminal cysteine-selenocysteine in the catalytic mechanism of mammalian thioredoxin reductase.
    Fujiwara N, Fujii T, Fujii J, Taniguchi N.
    J Biochem; 2001 May 25; 129(5):803-12. PubMed ID: 11328605
    [Abstract] [Full Text] [Related]

  • 17. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme.
    Sandalova T, Zhong L, Lindqvist Y, Holmgren A, Schneider G.
    Proc Natl Acad Sci U S A; 2001 Aug 14; 98(17):9533-8. PubMed ID: 11481439
    [Abstract] [Full Text] [Related]

  • 18. Selenium in thioredoxin reductase: a mechanistic perspective.
    Lacey BM, Eckenroth BE, Flemer S, Hondal RJ.
    Biochemistry; 2008 Dec 02; 47(48):12810-21. PubMed ID: 18986163
    [Abstract] [Full Text] [Related]

  • 19. The mutual sparing effects of selenium and vitamin E in animal nutrition may be further explained by the discovery that mammalian thioredoxin reductase is a selenoenzyme.
    Tamura T, Gladyshev V, Liu SY, Stadtman TC.
    Biofactors; 2008 Dec 02; 5(2):99-102. PubMed ID: 8722124
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.