These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 9183360
21. Direct activation of K(Ca) channel in airway smooth muscle by nitric oxide: involvement of a nitrothiosylation mechanism? Abderrahmane A, Salvail D, Dumoulin M, Garon J, Cadieux A, Rousseau E. Am J Respir Cell Mol Biol; 1998 Sep; 19(3):485-97. PubMed ID: 9730877 [Abstract] [Full Text] [Related]
23. Nitrergic relaxation in urethral smooth muscle: involvement of potassium channels and alternative redox forms of NO. Costa G, Labadía A, Triguero D, Jiménez E, García-Pascual A. Naunyn Schmiedebergs Arch Pharmacol; 2001 Dec 01; 364(6):516-23. PubMed ID: 11770006 [Abstract] [Full Text] [Related]
24. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation. Kruuse C, Rybalkin SD, Khurana TS, Jansen-Olesen I, Olesen J, Edvinsson L. Eur J Pharmacol; 2001 May 18; 420(1):55-65. PubMed ID: 11412839 [Abstract] [Full Text] [Related]
25. Effects of SIN-1 on isolated canine basilar arteries. Katusic ZS, Vanhoutte PM. J Cardiovasc Pharmacol; 1989 May 18; 14 Suppl 11():S72-5. PubMed ID: 2484704 [Abstract] [Full Text] [Related]
26. Tonic inhibitory action by nitric oxide on spontaneous mechanical activity in rat proximal colon: involvement of cyclic GMP and apamin-sensitive K+ channels. Mulè F, D'Angelo S, Serio R. Br J Pharmacol; 1999 May 18; 127(2):514-20. PubMed ID: 10385253 [Abstract] [Full Text] [Related]
27. Role of activation of calcium-sensitive K+ channels in NO- and hypoxia-induced pial artery vasodilation. Armstead WM. Am J Physiol; 1997 Apr 18; 272(4 Pt 2):H1785-90. PubMed ID: 9139963 [Abstract] [Full Text] [Related]
28. Role of calcium-activated K+ channels in vasodilation induced by nitroglycerine, acetylcholine and nitric oxide. Khan SA, Mathews WR, Meisheri KD. J Pharmacol Exp Ther; 1993 Dec 18; 267(3):1327-35. PubMed ID: 7505330 [Abstract] [Full Text] [Related]
29. Actions of 3-morpholinosydnonimin (SIN-1) on rabbit isolated penile erectile tissue. Holmquist F, Fridstrand M, Hedlund H, Andersson KE. J Urol; 1993 Oct 18; 150(4):1310-5. PubMed ID: 8396690 [Abstract] [Full Text] [Related]
30. Role of K+ channels and sodium pump in the vasodilation induced by acetylcholine, nitric oxide, and cyclic GMP in the rabbit aorta. Ferrer M, Marín J, Encabo A, Alonso MJ, Balfagón G. Gen Pharmacol; 1999 Jul 18; 33(1):35-41. PubMed ID: 10428014 [Abstract] [Full Text] [Related]
31. Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K channels. Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE. Am J Physiol; 1997 Jul 18; 273(1 Pt 2):H76-84. PubMed ID: 9249477 [Abstract] [Full Text] [Related]
32. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ. Br J Pharmacol; 1998 Apr 18; 123(7):1351-8. PubMed ID: 9579730 [Abstract] [Full Text] [Related]
33. P2u receptor-mediated release of endothelium-derived relaxing factor/nitric oxide and endothelium-derived hyperpolarizing factor from cerebrovascular endothelium in rats. You J, Johnson TD, Marrelli SP, Mombouli JV, Bryan RM. Stroke; 1999 May 18; 30(5):1125-33. PubMed ID: 10229754 [Abstract] [Full Text] [Related]
34. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels. Miura H, Liu Y, Gutterman DD. Circulation; 1999 Jun 22; 99(24):3132-8. PubMed ID: 10377076 [Abstract] [Full Text] [Related]
35. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle. Wu BN, Lin RJ, Lin CY, Shen KP, Chiang LC, Chen IJ. Br J Pharmacol; 2001 Sep 22; 134(2):265-74. PubMed ID: 11564644 [Abstract] [Full Text] [Related]
36. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F, Dusting GJ. Br J Pharmacol; 2001 Apr 22; 132(7):1558-64. PubMed ID: 11264250 [Abstract] [Full Text] [Related]
37. In vitro and in vivo interactions of nitrovasodilators and zaprinast, a cGMP-selective phosphodiesterase inhibitor. Merkel LA, Rivera LM, Perrone MH, Lappe RW. Eur J Pharmacol; 1992 May 27; 216(1):29-35. PubMed ID: 1326438 [Abstract] [Full Text] [Related]
38. Barium inhibits the endothelium-dependent component of flow but not acetylcholine-induced relaxation in isolated rabbit cerebral arteries. Wellman GC, Bevan JA. J Pharmacol Exp Ther; 1995 Jul 27; 274(1):47-53. PubMed ID: 7616433 [Abstract] [Full Text] [Related]
39. Effects of potassium channel inhibitors on the relaxation induced by the nitric oxide donor diethylamine nitric oxide in isolated human cerebral arteries. Hempelmann RG, Seebeck J, Ziegler A, Mehdorn HM. J Neurosurg; 2000 Dec 27; 93(6):1048-54. PubMed ID: 11117848 [Abstract] [Full Text] [Related]
40. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery. Cosentino F, Sill JC, Katusić ZS. Am J Physiol; 1993 Feb 27; 264(2 Pt 2):H413-8. PubMed ID: 8383455 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]