These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Weygand-Durasević I, Schwob E, Söll D. Proc Natl Acad Sci U S A; 1993 Mar 01; 90(5):2010-4. PubMed ID: 7680483 [Abstract] [Full Text] [Related]
25. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase. Sherman JM, Thomann HU, Söll D. J Mol Biol; 1996 Mar 15; 256(5):818-28. PubMed ID: 8601833 [Abstract] [Full Text] [Related]
26. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases. Schwob E, Söll D. EMBO J; 1993 Dec 15; 12(13):5201-8. PubMed ID: 7505222 [Abstract] [Full Text] [Related]
27. The core region of human glutaminyl-tRNA synthetase homologies with the Escherichia coli and yeast enzymes. Thömmes P, Fett R, Schray B, Kunze N, Knippers R. Nucleic Acids Res; 1988 Jun 24; 16(12):5391-406. PubMed ID: 3290852 [Abstract] [Full Text] [Related]
28. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases. Ludmerer SW, Schimmel P. J Biol Chem; 1987 Aug 05; 262(22):10801-6. PubMed ID: 3301841 [Abstract] [Full Text] [Related]
29. Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element. Hawko SA, Francklyn CS. Biochemistry; 2001 Feb 20; 40(7):1930-6. PubMed ID: 11329259 [Abstract] [Full Text] [Related]
30. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution. Saha R, Dasgupta S, Basu G, Roy S. Biochem J; 2009 Jan 15; 417(2):449-55. PubMed ID: 18817520 [Abstract] [Full Text] [Related]
33. The recognition of E. coli glutamine tRNA by glutaminyl-tRNA synthetase. Rogers MJ, Weygand-Durasević I, Schwob E, Sherman JM, Rogers KC, Thomann HU, Sylvers LA, Ohtsuka E, Inokuchi H, Söll D. Nucleic Acids Symp Ser; 1993 Jan 15; (29):211-3. PubMed ID: 7504247 [Abstract] [Full Text] [Related]
34. Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Ripmaster TL, Shiba K, Schimmel P. Proc Natl Acad Sci U S A; 1995 May 23; 92(11):4932-6. PubMed ID: 7761427 [Abstract] [Full Text] [Related]
35. A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Edwards H, Schimmel P. Mol Cell Biol; 1990 Apr 23; 10(4):1633-41. PubMed ID: 1690848 [Abstract] [Full Text] [Related]
36. Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. Wang CC, Morales AJ, Schimmel P. J Biol Chem; 2000 Jun 02; 275(22):17180-6. PubMed ID: 10747983 [Abstract] [Full Text] [Related]
37. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity. Zhang CM, Hou YM. Biochemistry; 2005 May 17; 44(19):7240-9. PubMed ID: 15882062 [Abstract] [Full Text] [Related]
38. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase. Glasfeld E, Landro JA, Schimmel P. Biochemistry; 1996 Apr 02; 35(13):4139-45. PubMed ID: 8672449 [Abstract] [Full Text] [Related]
39. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes. Hoben P, Uemura H, Yamao F, Cheung A, Swanson R, Sumner-Smith M, Söll D. Fed Proc; 1984 Dec 02; 43(15):2972-6. PubMed ID: 6389180 [Abstract] [Full Text] [Related]
40. The effect of N-terminal changes on arginyl-tRNA synthetase from Escherichia coli. Liu W, Liu MF, Xia X, Wang ED, Wang YL. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Mar 02; 34(2):131-7. PubMed ID: 12007009 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]