These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


377 related items for PubMed ID: 9190121

  • 1. Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis.
    Scott CB.
    J Sports Med Phys Fitness; 1997 Mar; 37(1):18-23. PubMed ID: 9190121
    [Abstract] [Full Text] [Related]

  • 2. Estimating energy expenditure for brief bouts of exercise with acute recovery.
    Scott CB.
    Appl Physiol Nutr Metab; 2006 Apr; 31(2):144-9. PubMed ID: 16604132
    [Abstract] [Full Text] [Related]

  • 3. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen comsumption (EPOC) as independent sources of energy expenditure.
    Scott CB.
    Eur J Appl Physiol Occup Physiol; 1998 Feb; 77(3):200-5. PubMed ID: 9535579
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Oxygen deficit and slow oxygen component relationships between intermittent and continuous exercise.
    Scott CB.
    J Sports Sci; 1999 Dec; 17(12):951-6. PubMed ID: 10622355
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Aerobic, anaerobic, and excess postexercise oxygen consumption energy expenditure of muscular endurance and strength: 1-set of bench press to muscular fatigue.
    Scott CB, Leighton BH, Ahearn KJ, McManus JJ.
    J Strength Cond Res; 2011 Apr; 25(4):903-8. PubMed ID: 20703175
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Aerobic and anaerobic energy expenditure during exhaustive ramp exercise.
    Scott CB, Bogdanffy GM.
    Int J Sports Med; 1998 May; 19(4):277-80. PubMed ID: 9657369
    [Abstract] [Full Text] [Related]

  • 12. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA, Ball D, Krustrup P, Aagaard P, Kjaer M, Sargeant AJ, Hellsten Y, Bangsbo J.
    J Physiol; 2001 Oct 01; 536(Pt 1):261-71. PubMed ID: 11579174
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Differences in oxygen uptake but equivalent energy expenditure between a brief bout of cycling and running.
    Scott CB, Littlefield ND, Chason JD, Bunker MP, Asselin EM.
    Nutr Metab (Lond); 2006 Jan 03; 3():1. PubMed ID: 16390548
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Energy system interaction and relative contribution during maximal exercise.
    Gastin PB.
    Sports Med; 2001 Jan 03; 31(10):725-41. PubMed ID: 11547894
    [Abstract] [Full Text] [Related]

  • 19. Quantification of anaerobic energy production during intense exercise.
    Bangsbo J.
    Med Sci Sports Exerc; 1998 Jan 03; 30(1):47-52. PubMed ID: 9475643
    [Abstract] [Full Text] [Related]

  • 20. Effect of temperature on skeletal muscle energy turnover during dynamic knee-extensor exercise in humans.
    Ferguson RA, Krustrup P, Kjaer M, Mohr M, Ball D, Bangsbo J.
    J Appl Physiol (1985); 2006 Jul 03; 101(1):47-52. PubMed ID: 16514001
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.