These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Davis CH, Raulston JE, Wyrick PB. Infect Immun; 2002 Jul; 70(7):3413-8. PubMed ID: 12065480 [Abstract] [Full Text] [Related]
3. The microbicidal agent C31G inhibits Chlamydia trachomatis infectivity in vitro. Wyrick PB, Knight ST, Gerbig DG, Raulston JE, Davis CH, Paul TR, Malamud D. Antimicrob Agents Chemother; 1997 Jun; 41(6):1335-44. PubMed ID: 9174195 [Abstract] [Full Text] [Related]
8. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Schramm N, Wyrick PB. Infect Immun; 1995 Jan; 63(1):324-32. PubMed ID: 7806372 [Abstract] [Full Text] [Related]
9. Comparison of Chlamydia trachomatis serovar L2 growth in polarized genital epithelial cells grown in three-dimensional culture with non-polarized cells. Dessus-Babus S, Moore CG, Whittimore JD, Wyrick PB. Microbes Infect; 2008 Apr; 10(5):563-70. PubMed ID: 18396437 [Abstract] [Full Text] [Related]
10. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Raulston JE. Infect Immun; 1997 Nov; 65(11):4539-47. PubMed ID: 9353031 [Abstract] [Full Text] [Related]
12. Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Wyrick PB, Gerbig DG, Knight ST, Raulston JE. Microb Pathog; 1996 Jan; 20(1):31-40. PubMed ID: 8692008 [Abstract] [Full Text] [Related]
13. Differences in innate immune responses (in vitro) to HeLa cells infected with nondisseminating serovar E and disseminating serovar L2 of Chlamydia trachomatis. Dessus-Babus S, Darville TL, Cuozzo FP, Ferguson K, Wyrick PB. Infect Immun; 2002 Jun; 70(6):3234-48. PubMed ID: 12011019 [Abstract] [Full Text] [Related]
14. Binding of Chlamydia trachomatis serovar L2 to collagen types I and IV, fibronectin, heparan sulphate, laminin and vitronectin. Kihlström E, Majeed M, Rozalska B, Wadström T. Zentralbl Bakteriol; 1992 Oct; 277(3):329-33. PubMed ID: 1283091 [Abstract] [Full Text] [Related]
15. Monoclonal antibody neutralization of unmanipulated Chlamydia trachomatis serovar A infection of human epithelioid cells (A-431). Barsoum IS, Goodman TA, Hardin LK, Colley DG. Med Microbiol Immunol; 1989 Oct; 178(2):113-20. PubMed ID: 2733633 [Abstract] [Full Text] [Related]
16. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. Grieshaber S, Grieshaber N, Yang H, Baxter B, Hackstadt T, Omsland A. J Bacteriol; 2018 Jul 15; 200(14):. PubMed ID: 29735758 [Abstract] [Full Text] [Related]
17. Characterization of the Growth of Chlamydia trachomatis in In Vitro-Generated Stratified Epithelium. Nogueira AT, Braun KM, Carabeo RA. Front Cell Infect Microbiol; 2017 Jul 15; 7():438. PubMed ID: 29067282 [Abstract] [Full Text] [Related]
18. A live and inactivated Chlamydia trachomatis mouse pneumonitis strain induces the maturation of dendritic cells that are phenotypically and immunologically distinct. Rey-Ladino J, Koochesfahani KM, Zaharik ML, Shen C, Brunham RC. Infect Immun; 2005 Mar 15; 73(3):1568-77. PubMed ID: 15731055 [Abstract] [Full Text] [Related]
19. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development. Hall JV, Sun J, Slade J, Kintner J, Bambino M, Whittimore J, Schoborg RV. Front Cell Infect Microbiol; 2014 Mar 15; 4():158. PubMed ID: 25414835 [Abstract] [Full Text] [Related]
20. Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Carabeo RA, Hackstadt T. Infect Immun; 2001 Sep 15; 69(9):5899-904. PubMed ID: 11500469 [Abstract] [Full Text] [Related] Page: [Next] [New Search]