These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
528 related items for PubMed ID: 9199806
1. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration. Aliev MK, Saks VA. Biophys J; 1997 Jul; 73(1):428-45. PubMed ID: 9199806 [Abstract] [Full Text] [Related]
2. Is there the creatine kinase equilibrium in working heart cells? Saks VA, Aliev MK. Biochem Biophys Res Commun; 1996 Oct 14; 227(2):360-7. PubMed ID: 8878521 [Abstract] [Full Text] [Related]
3. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK, van Dorsten FA, Nederhoff MG, van Echteld CJ, Veksler V, Nicolay K, Saks VA. Mol Cell Biochem; 1998 Jul 14; 184(1-2):209-29. PubMed ID: 9746323 [Abstract] [Full Text] [Related]
4. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK. Mol Cell Biochem; 1998 Jul 14; 184(1-2):249-89. PubMed ID: 9746325 [Abstract] [Full Text] [Related]
5. Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Saks VA, Kongas O, Vendelin M, Kay L. Acta Physiol Scand; 2000 Apr 14; 168(4):635-41. PubMed ID: 10759600 [Abstract] [Full Text] [Related]
6. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model. Dos Santos P, Aliev MK, Diolez P, Duclos F, Besse P, Bonoron-Adèle S, Sikk P, Canioni P, Saks VA. J Mol Cell Cardiol; 2000 Sep 14; 32(9):1703-34. PubMed ID: 10966833 [Abstract] [Full Text] [Related]
7. The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U, Wallimann T, Aliev M, Vendelin M. Subcell Biochem; 2007 Sep 14; 46():27-65. PubMed ID: 18652071 [Abstract] [Full Text] [Related]
8. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OYu, Kuznetsov AV. Mol Cell Biochem; 1994 Sep 14; 133-134():155-92. PubMed ID: 7808453 [Abstract] [Full Text] [Related]
9. Quantitative analysis of the 'phosphocreatine shuttle': I. A probability approach to the description of phosphocreatine production in the coupled creatine kinase-ATP/ADP translocase-oxidative phosphorylation reactions in heart mitochondria. Aliev MK, Saks VA. Biochim Biophys Acta; 1993 Jul 26; 1143(3):291-300. PubMed ID: 8329438 [Abstract] [Full Text] [Related]
10. Isozymes of creatine kinase in mammalian cell cultures. Van Brussel E, Yang JJ, Seraydarian MW. J Cell Physiol; 1983 Aug 26; 116(2):221-6. PubMed ID: 6863402 [Abstract] [Full Text] [Related]
11. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Jacobus WE. Annu Rev Physiol; 1985 Aug 26; 47():707-25. PubMed ID: 3888084 [Abstract] [Full Text] [Related]
12. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils]. Saks VA, Lipina NV, Liulina IV, Chernousova GB, Fetter R, Smirnov VI, Chazov EI. Biokhimiia; 1976 Aug 26; 41(8):1460-70. PubMed ID: 1030648 [Abstract] [Full Text] [Related]
13. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation]. Kuznetsov AV, Saks VA, Kupriianov VV. Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985 Aug 26; 8(1):7-14. PubMed ID: 4005057 [No Abstract] [Full Text] [Related]
14. Insights on the impact of mitochondrial organisation on bioenergetics in high-resolution computational models of cardiac cell architecture. Ghosh S, Tran K, Delbridge LMD, Hickey AJR, Hanssen E, Crampin EJ, Rajagopal V. PLoS Comput Biol; 2018 Dec 26; 14(12):e1006640. PubMed ID: 30517098 [Abstract] [Full Text] [Related]
15. Intracellular energy transport and control of cardiac contraction. Saks VA, Kupriyanov VV. Adv Myocardiol; 1982 Dec 26; 3():475-97. PubMed ID: 6221378 [Abstract] [Full Text] [Related]
16. Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells. Saks V, Dos Santos P, Gellerich FN, Diolez P. Mol Cell Biochem; 1998 Jul 26; 184(1-2):291-307. PubMed ID: 9746326 [Abstract] [Full Text] [Related]
17. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Guzun R, Timohhina N, Tepp K, Gonzalez-Granillo M, Shevchuk I, Chekulayev V, Kuznetsov AV, Kaambre T, Saks VA. Amino Acids; 2011 May 26; 40(5):1333-48. PubMed ID: 21390528 [Abstract] [Full Text] [Related]
18. Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy. Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG. Am J Physiol; 1991 Oct 26; 261(4 Suppl):30-8. PubMed ID: 1928451 [Abstract] [Full Text] [Related]
19. A simple analysis of the "phosphocreatine shuttle". Meyer RA, Sweeney HL, Kushmerick MJ. Am J Physiol; 1984 May 26; 246(5 Pt 1):C365-77. PubMed ID: 6372517 [Abstract] [Full Text] [Related]
20. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts. Branovets J, Sepp M, Kotlyarova S, Jepihhina N, Sokolova N, Aksentijevic D, Lygate CA, Neubauer S, Vendelin M, Birkedal R. Am J Physiol Heart Circ Physiol; 2013 Aug 15; 305(4):H506-20. PubMed ID: 23792673 [Abstract] [Full Text] [Related] Page: [Next] [New Search]