These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1002 related items for PubMed ID: 9201718

  • 21. A putative zinc finger protein, Saccharomyces cerevisiae Vps18p, affects late Golgi functions required for vacuolar protein sorting and efficient alpha-factor prohormone maturation.
    Robinson JS, Graham TR, Emr SD.
    Mol Cell Biol; 1991 Dec; 11(12):5813-24. PubMed ID: 1840635
    [Abstract] [Full Text] [Related]

  • 22. Schizosaccharomyces pombe Pep12p is required for vacuolar protein transport and vacuolar homotypic fusion.
    Hosomi A, Nakase M, Takegawa K.
    J Biosci Bioeng; 2011 Oct; 112(4):309-14. PubMed ID: 21757403
    [Abstract] [Full Text] [Related]

  • 23. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic.
    Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG.
    Mol Biol Cell; 1997 Dec; 8(12):2659-76. PubMed ID: 9398683
    [Abstract] [Full Text] [Related]

  • 24. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins.
    Black MW, Pelham HR.
    J Cell Biol; 2000 Oct 30; 151(3):587-600. PubMed ID: 11062260
    [Abstract] [Full Text] [Related]

  • 25. Identification of a mammalian Golgi Sec1p-like protein, mVps45.
    Tellam JT, James DE, Stevens TH, Piper RC.
    J Biol Chem; 1997 Mar 07; 272(10):6187-93. PubMed ID: 9045632
    [Abstract] [Full Text] [Related]

  • 26. New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion.
    Wurmser AE, Sato TK, Emr SD.
    J Cell Biol; 2000 Oct 30; 151(3):551-62. PubMed ID: 11062257
    [Abstract] [Full Text] [Related]

  • 27. Phosphoinositide signaling and turnover: PtdIns(3)P, a regulator of membrane traffic, is transported to the vacuole and degraded by a process that requires lumenal vacuolar hydrolase activities.
    Wurmser AE, Emr SD.
    EMBO J; 1998 Sep 01; 17(17):4930-42. PubMed ID: 9724630
    [Abstract] [Full Text] [Related]

  • 28. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast.
    Kranz A, Kinner A, Kölling R.
    Mol Biol Cell; 2001 Mar 01; 12(3):711-23. PubMed ID: 11251082
    [Abstract] [Full Text] [Related]

  • 29. Mammalian homologues of yeast vacuolar protein sorting (vps) genes implicated in Golgi-to-lysosome trafficking.
    Pevsner J, Hsu SC, Hyde PS, Scheller RH.
    Gene; 1996 Dec 12; 183(1-2):7-14. PubMed ID: 8996080
    [Abstract] [Full Text] [Related]

  • 30. The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization.
    Cereghino JL, Marcusson EG, Emr SD.
    Mol Biol Cell; 1995 Sep 12; 6(9):1089-102. PubMed ID: 8534908
    [Abstract] [Full Text] [Related]

  • 31. Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment.
    Vida TA, Huyer G, Emr SD.
    J Cell Biol; 1993 Jun 12; 121(6):1245-56. PubMed ID: 8509446
    [Abstract] [Full Text] [Related]

  • 32. Homotypic vacuolar fusion mediated by t- and v-SNAREs.
    Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A.
    Nature; 1997 May 08; 387(6629):199-202. PubMed ID: 9144293
    [Abstract] [Full Text] [Related]

  • 33. Cell-free transport from the trans-golgi network to late endosome requires factors involved in formation and consumption of clathrin-coated vesicles.
    Abazeed ME, Blanchette JM, Fuller RS.
    J Biol Chem; 2005 Feb 11; 280(6):4442-50. PubMed ID: 15572353
    [Abstract] [Full Text] [Related]

  • 34. Ordering of compartments in the yeast endocytic pathway.
    Prescianotto-Baschong C, Riezman H.
    Traffic; 2002 Jan 11; 3(1):37-49. PubMed ID: 11872141
    [Abstract] [Full Text] [Related]

  • 35. A role for Tlg1p in the transport of proteins within the Golgi apparatus of Saccharomyces cerevisiae.
    Coe JG, Lim AC, Xu J, Hong W.
    Mol Biol Cell; 1999 Jul 11; 10(7):2407-23. PubMed ID: 10397773
    [Abstract] [Full Text] [Related]

  • 36. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking.
    Sato TK, Darsow T, Emr SD.
    Mol Cell Biol; 1998 Sep 11; 18(9):5308-19. PubMed ID: 9710615
    [Abstract] [Full Text] [Related]

  • 37. High expression of the yeast syntaxin-related Vam3 protein suppresses the protein transport defects of a pep12 null mutant.
    Götte M, Gallwitz D.
    FEBS Lett; 1997 Jul 07; 411(1):48-52. PubMed ID: 9247140
    [Abstract] [Full Text] [Related]

  • 38. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae.
    Piper RC, Cooper AA, Yang H, Stevens TH.
    J Cell Biol; 1995 Nov 07; 131(3):603-17. PubMed ID: 7593183
    [Abstract] [Full Text] [Related]

  • 39. The yeast endosomal t-SNARE, Pep12p, functions in the absence of its transmembrane domain.
    Gerrard SR, Mecklem AB, Stevens TH.
    Traffic; 2000 Jan 07; 1(1):45-55. PubMed ID: 11208059
    [Abstract] [Full Text] [Related]

  • 40. A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization.
    Horazdovsky BF, Cowles CR, Mustol P, Holmes M, Emr SD.
    J Biol Chem; 1996 Dec 27; 271(52):33607-15. PubMed ID: 8969229
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 51.