These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
330 related items for PubMed ID: 9201829
1. Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression. Carlson GD, Warden KE, Barbeau JM, Bahniuk E, Kutina-Nelson KL, Biro CL, Bohlman HH, LaManna JC. Spine (Phila Pa 1976); 1997 Jun 15; 22(12):1285-91. PubMed ID: 9201829 [Abstract] [Full Text] [Related]
2. Perfusion-limited recovery of evoked potential function after spinal cord injury. Carlson GD, Gorden CD, Nakazowa S, Wada E, Warden K, LaManna JC. Spine (Phila Pa 1976); 2000 May 15; 25(10):1218-26. PubMed ID: 10806497 [Abstract] [Full Text] [Related]
4. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. Carlson GD, Minato Y, Okada A, Gorden CD, Warden KE, Barbeau JM, Biro CL, Bahnuik E, Bohlman HH, Lamanna JC. J Neurotrauma; 1997 Dec 15; 14(12):951-62. PubMed ID: 9475376 [Abstract] [Full Text] [Related]
5. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. Carlson GD, Gorden CD, Oliff HS, Pillai JJ, LaManna JC. J Bone Joint Surg Am; 2003 Jan 15; 85(1):86-94. PubMed ID: 12533577 [Abstract] [Full Text] [Related]
6. Somatosensory evoked potential changes and decompression timing for spinal cord function recovery and evoked potentials in rats with spinal cord injury. Cheng XH, Zhang L, Fu J. Brain Res Bull; 2019 Mar 15; 146():7-11. PubMed ID: 30550848 [Abstract] [Full Text] [Related]
8. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury. Hamamoto Y, Ogata T, Morino T, Hino M, Yamamoto H. Spine (Phila Pa 1976); 2007 Aug 15; 32(18):1955-62. PubMed ID: 17700440 [Abstract] [Full Text] [Related]
9. Spinal cord tissue pressure during spinal cord distraction in dogs. Jarzem PF, Quance DR, Doyle DJ, Begin LR, Kostuik JP. Spine (Phila Pa 1976); 1992 Aug 15; 17(8 Suppl):S227-34. PubMed ID: 1523505 [Abstract] [Full Text] [Related]
10. The effects of hypertonic saline on spinal cord blood flow following compression injury. Spera PA, Vasthare US, Tuma RF, Young WF. Acta Neurochir (Wien); 2000 Aug 15; 142(7):811-7. PubMed ID: 10955677 [Abstract] [Full Text] [Related]
14. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat. Jou IM. Spine (Phila Pa 1976); 2000 Aug 01; 25(15):1878-85. PubMed ID: 10908929 [Abstract] [Full Text] [Related]
15. The effects of spinal cord injury induced by shortening on motor evoked potentials and spinal cord blood flow: an experimental study in Swine. Modi HN, Suh SW, Hong JY, Yang JH. J Bone Joint Surg Am; 2011 Oct 05; 93(19):1781-9. PubMed ID: 22005863 [Abstract] [Full Text] [Related]
16. Comparison of Motor-Evoked Potentials Versus Somatosensory-Evoked Potentials as Early Indicators of Neural Compromise in Rat Model of Spinal Cord Compression. Morris SH, Howard JJ, El-Hawary R. Spine (Phila Pa 1976); 2017 Mar 15; 42(6):E326-E331. PubMed ID: 27496665 [Abstract] [Full Text] [Related]
17. Experimental chronic compressive cervical myelopathy: effects of decompression. Harkey HL, al-Mefty O, Marawi I, Peeler DF, Haines DE, Alexander LF. J Neurosurg; 1995 Aug 15; 83(2):336-41. PubMed ID: 7616281 [Abstract] [Full Text] [Related]