These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 9202952

  • 1. Responses of plasma glutamine, free tryptophan and branched-chain amino acids to prolonged exercise after a regime designed to reduce muscle glycogen.
    Zanker CL, Swaine IL, Castell LM, Newsholme EA.
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):543-8. PubMed ID: 9202952
    [Abstract] [Full Text] [Related]

  • 2. Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects.
    Blomstrand E, Andersson S, Hassmén P, Ekblom B, Newsholme EA.
    Acta Physiol Scand; 1995 Feb; 153(2):87-96. PubMed ID: 7778464
    [Abstract] [Full Text] [Related]

  • 3. Effect of carbohydrate supplementation on plasma glutamine during prolonged exercise and recovery.
    van Hall G, Saris WH, Wagenmakers AJ.
    Int J Sports Med; 1998 Feb; 19(2):82-6. PubMed ID: 9562214
    [Abstract] [Full Text] [Related]

  • 4. Changes in plasma tryptophan/branched chain amino acid ratio in responses to training volume variation.
    Tanaka H, West KA, Duncan GE, Bassett DR.
    Int J Sports Med; 1997 May; 18(4):270-5. PubMed ID: 9231843
    [Abstract] [Full Text] [Related]

  • 5. Effect of carbohydrate ingestion on brain exchange of amino acids during sustained exercise in human subjects.
    Blomstrand E, Møller K, Secher NH, Nybo L.
    Acta Physiol Scand; 2005 Nov; 185(3):203-9. PubMed ID: 16218925
    [Abstract] [Full Text] [Related]

  • 6. Exercise increases tryptophan availability to the brain in older men age 57-70 years.
    Melancon MO, Lorrain D, Dionne IJ.
    Med Sci Sports Exerc; 2012 May; 44(5):881-7. PubMed ID: 22051569
    [Abstract] [Full Text] [Related]

  • 7. Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by beta-adrenergic blockade.
    Zderic TW, Schenk S, Davidson CJ, Byerley LO, Coyle EF.
    Am J Physiol Endocrinol Metab; 2004 Dec; 287(6):E1195-201. PubMed ID: 15315908
    [Abstract] [Full Text] [Related]

  • 8. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism.
    Wagenmakers AJ.
    Exerc Sport Sci Rev; 1998 Dec; 26():287-314. PubMed ID: 9696993
    [Abstract] [Full Text] [Related]

  • 9. Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats.
    Morifuji M, Kanda A, Koga J, Kawanaka K, Higuchi M.
    Amino Acids; 2010 Apr; 38(4):1109-15. PubMed ID: 19593593
    [Abstract] [Full Text] [Related]

  • 10. Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans.
    MacLean DA, Graham TE.
    J Appl Physiol (1985); 1993 Jun; 74(6):2711-7. PubMed ID: 8365971
    [Abstract] [Full Text] [Related]

  • 11. Effect of n-3 fatty acids on free tryptophan and exercise fatigue.
    Huffman DM, Altena TS, Mawhinney TP, Thomas TR.
    Eur J Appl Physiol; 2004 Aug; 92(4-5):584-91. PubMed ID: 15052485
    [Abstract] [Full Text] [Related]

  • 12. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use.
    Stellingwerff T, Boon H, Gijsen AP, Stegen JH, Kuipers H, van Loon LJ.
    Pflugers Arch; 2007 Jul; 454(4):635-47. PubMed ID: 17333244
    [Abstract] [Full Text] [Related]

  • 13. Effects of carbohydrate feedings on plasma free tryptophan and branched-chain amino acids during prolonged cycling.
    Davis JM, Bailey SP, Woods JA, Galiano FJ, Hamilton MT, Bartoli WP.
    Eur J Appl Physiol Occup Physiol; 1992 Jul; 65(6):513-9. PubMed ID: 1483439
    [Abstract] [Full Text] [Related]

  • 14. Changes in plasma concentrations of aromatic and branched-chain amino acids during sustained exercise in man and their possible role in fatigue.
    Blomstrand E, Celsing F, Newsholme EA.
    Acta Physiol Scand; 1988 May; 133(1):115-21. PubMed ID: 3227900
    [Abstract] [Full Text] [Related]

  • 15. Influence of a carbohydrate-electrolyte solution ingested during running on muscle glycogen utilisation in fed humans.
    Chryssanthopoulos C, Williams C, Nowitz A.
    Int J Sports Med; 2002 May; 23(4):279-84. PubMed ID: 12015629
    [Abstract] [Full Text] [Related]

  • 16. High-intensity exercise and muscle glycogen availability in humans.
    Balsom PD, Gaitanos GC, Söderlund K, Ekblom B.
    Acta Physiol Scand; 1999 Apr; 165(4):337-45. PubMed ID: 10350228
    [Abstract] [Full Text] [Related]

  • 17. Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease.
    Wagenmakers AJ, Coakley JH, Edwards RH.
    Int J Sports Med; 1990 May; 11 Suppl 2():S101-13. PubMed ID: 2193889
    [Abstract] [Full Text] [Related]

  • 18. Branched-chain amino acids and arginine supplementation attenuates skeletal muscle proteolysis induced by moderate exercise in young individuals.
    Matsumoto K, Mizuno M, Mizuno T, Dilling-Hansen B, Lahoz A, Bertelsen V, Münster H, Jordening H, Hamada K, Doi T.
    Int J Sports Med; 2007 Jun; 28(6):531-8. PubMed ID: 17497593
    [Abstract] [Full Text] [Related]

  • 19. Diet composition and the performance of high-intensity exercise.
    Maughan RJ, Greenhaff PL, Leiper JB, Ball D, Lambert CP, Gleeson M.
    J Sports Sci; 1997 Jun; 15(3):265-75. PubMed ID: 9232552
    [Abstract] [Full Text] [Related]

  • 20. Role of meal carbohydrate content for the imbalance of plasma amino acids in patients with liver cirrhosis.
    Schulte-Frohlinde E, Wagenpfeil S, Willis J, Lersch C, Eckel F, Schmid R, Schusdziarra V.
    J Gastroenterol Hepatol; 2007 Aug; 22(8):1241-8. PubMed ID: 17688664
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.