These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


135 related items for PubMed ID: 920457

  • 1. Influence of the lipid environment of the properties of rhodopsin in the photoreceptor membrane.
    Bonting SL, van Breugel PJ, Daemen FJ.
    Adv Exp Med Biol; 1977; 83():175-89. PubMed ID: 920457
    [No Abstract] [Full Text] [Related]

  • 2. Distribution of charge on photoreceptor disc membranes and implications for charged lipid asymmetry.
    Tsui FC, Sundberg SA, Hubbell WL.
    Biophys J; 1990 Jan; 57(1):85-97. PubMed ID: 2153422
    [Abstract] [Full Text] [Related]

  • 3. Biochemical aspects of the visual process. XXXVII. Evidence for lateral aggregation of rhodopsin molecules in phospholipase C-treated bovine photoreceptor membranes.
    Olive J, Benedetti EL, van Breugel PJ, Daemen FJ, Bonting SL.
    Biochim Biophys Acta; 1978 May 04; 509(1):129-35. PubMed ID: 647003
    [Abstract] [Full Text] [Related]

  • 4. Rhodopsin in model membranes: charge displacements in interfacial layers.
    Trissl HW, Darszon A, Montal M.
    Proc Natl Acad Sci U S A; 1977 Jan 04; 74(1):207-10. PubMed ID: 13363
    [Abstract] [Full Text] [Related]

  • 5. Biochemical aspects of the visual process. XXXVIII. Effects of lateral aggregation on rhodopsin in phospholipase C-treated photoreceptor membranes.
    van Breugel PJ, Geurts PH, Daemen FJ, Bonting SL.
    Biochim Biophys Acta; 1978 May 04; 509(1):136-47. PubMed ID: 647004
    [Abstract] [Full Text] [Related]

  • 6. Electrical responses to light: fast photovoltages of rhodopsin-containing membrane systems and their correlations with the spectral intermediates.
    Trissl HW.
    Methods Enzymol; 1982 May 04; 81():431-9. PubMed ID: 7098890
    [No Abstract] [Full Text] [Related]

  • 7. Cooperative conformational change in rod photoreceptor disk membrane induced by bleaching.
    Asai H, Chiba T, Watanabe M.
    Vision Res; 1977 May 04; 17(8):983-4. PubMed ID: 595406
    [No Abstract] [Full Text] [Related]

  • 8. Lack of interaction of rhodopsin chromophore with membrane lipids. An electron-electron double resonance study using 14N:15N pairs.
    Renk GE, Crouch RK, Feix JB.
    Biophys J; 1988 Mar 04; 53(3):361-5. PubMed ID: 2832012
    [Abstract] [Full Text] [Related]

  • 9. Transbilayer coupling mechanism for the formation of lipid asymmetry in biological membranes. Application to the photoreceptor disc membrane.
    Hubbell WL.
    Biophys J; 1990 Jan 04; 57(1):99-108. PubMed ID: 2297564
    [Abstract] [Full Text] [Related]

  • 10. Rhodopsin vesicles derived from retinal-outer-segment membranes: effect of light and detergent on the lipid fraction [proceedings].
    Virmaux N, Delmelle M, Nullans G, Dreyfus H.
    Biochem Soc Trans; 1978 Jan 04; 6(3):669-71. PubMed ID: 208896
    [No Abstract] [Full Text] [Related]

  • 11. Photostable pigments within the membrane of photoreceptors and their possible role.
    Kirschfeld K, Franceschini N.
    Biophys Struct Mech; 1977 Jun 29; 3(2):191-4. PubMed ID: 890056
    [Abstract] [Full Text] [Related]

  • 12. The orientation of the chromophore of vertebrate rhodopsin in the "meta" intermediate states and the reversibility of the meta II-meta III transition.
    Chabre M, Breton J.
    Vision Res; 1979 Jun 29; 19(9):1005-18. PubMed ID: 43624
    [No Abstract] [Full Text] [Related]

  • 13. Proton, carbon-13, and phosphorus-31 NMR methods for the investigation of rhodopsin--lipid interactions in retinal rod outer segment membranes.
    Brown MF, Deese AJ, Dratz EA.
    Methods Enzymol; 1982 Jun 29; 81():709-28. PubMed ID: 7098912
    [No Abstract] [Full Text] [Related]

  • 14. Interaction between spin-labeled rhodopsin and spin-labeled phospholipids in the retinal outer segment disc membranes.
    Rousselet A, Devaux PF.
    FEBS Lett; 1978 Sep 01; 93(1):161-4. PubMed ID: 212310
    [No Abstract] [Full Text] [Related]

  • 15. Decrease in magnetic anisotropy of external segments of the retinal rods after a total photolysis.
    Chagneux R, Chagneux H, Chalazonitis N.
    Biophys J; 1977 Apr 01; 18(1):125-7. PubMed ID: 856315
    [Abstract] [Full Text] [Related]

  • 16. [Relationship between dark adaptation in retinal rods and rhodopsin photolysis].
    Kosolapov SS, Kalamkarov GR, Ostrovskiĭ MA.
    Fiziol Zh SSSR Im I M Sechenova; 1978 Jul 01; 64(7):905-11. PubMed ID: 308011
    [No Abstract] [Full Text] [Related]

  • 17. The possible role of rhodopsin and the microvillus in light adaptation of the photoreceptors of an insect.
    Razmjoo S, Hamdorf K.
    Symp Soc Exp Biol; 1983 Jul 01; 36():109-31. PubMed ID: 6399778
    [No Abstract] [Full Text] [Related]

  • 18. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane.
    De Grip WJ, Drenthe EH, Van Echteld CJ, De Kruijff B, Verkleij AJ.
    Biochim Biophys Acta; 1979 Dec 12; 558(3):330-7. PubMed ID: 508752
    [Abstract] [Full Text] [Related]

  • 19. Animal rhodopsin as a photogenerator of an electric potential that increases photoreceptor membrane permeability.
    Drachev LA, Kalamkarov GR, Kaulen AD, Ostrovsky MA, Skulachev VP.
    FEBS Lett; 1980 Sep 22; 119(1):125-31. PubMed ID: 6253316
    [No Abstract] [Full Text] [Related]

  • 20. [Reversible pH-dependent aggregation of rhodopsin molecules in photoreceptor membranes].
    Pogozheva ID, Kuznetsov VA, Livshits VA, Fedorovich IB, Ostrovskiĭ MA.
    Dokl Akad Nauk SSSR; 1981 Sep 22; 260(5):1254-8. PubMed ID: 7307912
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.