These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 9204882
1. Plant polyketide synthases leading to stilbenoids have a domain catalyzing malonyl-CoA:CO2 exchange, malonyl-CoA decarboxylation, and covalent enzyme modification and a site for chain lengthening. Preisig-Müller R, Gehlert R, Melchior F, Stietz U, Kindl H. Biochemistry; 1997 Jul 08; 36(27):8349-58. PubMed ID: 9204882 [Abstract] [Full Text] [Related]
2. Role of the active site cysteine of DpgA, a bacterial type III polyketide synthase. Tseng CC, McLoughlin SM, Kelleher NL, Walsh CT. Biochemistry; 2004 Feb 03; 43(4):970-80. PubMed ID: 14744141 [Abstract] [Full Text] [Related]
3. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Jez JM, Ferrer JL, Bowman ME, Dixon RA, Noel JP. Biochemistry; 2000 Feb 08; 39(5):890-902. PubMed ID: 10653632 [Abstract] [Full Text] [Related]
4. Quantitative analysis of loading and extender acyltransferases of modular polyketide synthases. Liou GF, Lau J, Cane DE, Khosla C. Biochemistry; 2003 Jan 14; 42(1):200-7. PubMed ID: 12515555 [Abstract] [Full Text] [Related]
5. Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase. Abe I, Watanabe T, Lou W, Noguchi H. FEBS J; 2006 Jan 14; 273(1):208-18. PubMed ID: 16367761 [Abstract] [Full Text] [Related]
6. Identification of a pentaketide stilbene produced by a type III polyketide synthase from Pinus sylvestris and characterisation of free coenzyme A intermediates. Li TL, Spiteller D, Spencer JB. Chembiochem; 2009 Mar 23; 10(5):896-901. PubMed ID: 19266535 [Abstract] [Full Text] [Related]
7. Mechanistic analysis of acyl transferase domain exchange in polyketide synthase modules. Hans M, Hornung A, Dziarnowski A, Cane DE, Khosla C. J Am Chem Soc; 2003 May 07; 125(18):5366-74. PubMed ID: 12720450 [Abstract] [Full Text] [Related]
8. Ketosynthases in the initiation and elongation modules of aromatic polyketide synthases have orthogonal acyl carrier protein specificity. Tang Y, Lee TS, Kobayashi S, Khosla C. Biochemistry; 2003 Jun 03; 42(21):6588-95. PubMed ID: 12767243 [Abstract] [Full Text] [Related]
10. Structural similarities between 6-methylsalicylic acid synthase from Penicillium patulum and vertebrate type I fatty acid synthase: evidence from thiol modification studies. Child CJ, Spencer JB, Bhogal P, Shoolingin-Jordan PM. Biochemistry; 1996 Sep 24; 35(38):12267-74. PubMed ID: 8823160 [Abstract] [Full Text] [Related]
11. The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. Abe I, Utsumi Y, Oguro S, Noguchi H. FEBS Lett; 2004 Mar 26; 562(1-3):171-6. PubMed ID: 15044020 [Abstract] [Full Text] [Related]
12. Alteration of reaction and substrate specificity of a bacterial type III polyketide synthase by site-directed mutagenesis. Funa N, Ohnishi Y, Ebizuka Y, Horinouchi S. Biochem J; 2002 Nov 01; 367(Pt 3):781-9. PubMed ID: 12139488 [Abstract] [Full Text] [Related]
13. Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Schröder J, Raiber S, Berger T, Schmidt A, Schmidt J, Soares-Sello AM, Bardshiri E, Strack D, Simpson TJ, Veit M, Schröder G. Biochemistry; 1998 Jun 09; 37(23):8417-25. PubMed ID: 9622493 [Abstract] [Full Text] [Related]
14. Evidence for catalytic cysteine-histidine dyad in chalcone synthase. Suh DY, Kagami J, Fukuma K, Sankawa U. Biochem Biophys Res Commun; 2000 Sep 07; 275(3):725-30. PubMed ID: 10973790 [Abstract] [Full Text] [Related]
15. Structural control of polyketide formation in plant-specific polyketide synthases. Jez JM, Austin MB, Ferrer J, Bowman ME, Schröder J, Noel JP. Chem Biol; 2000 Dec 07; 7(12):919-30. PubMed ID: 11137815 [Abstract] [Full Text] [Related]
17. Deletion of the conserved first 18 N-terminal amino acid residues in rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA sensitivity and binding. Shi J, Zhu H, Arvidson DN, Cregg JM, Woldegiorgis G. Biochemistry; 1998 Aug 04; 37(31):11033-8. PubMed ID: 9692998 [Abstract] [Full Text] [Related]
19. Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis. Zhou P, Florova G, Reynolds KA. Chem Biol; 1999 Aug 04; 6(8):577-84. PubMed ID: 10421763 [Abstract] [Full Text] [Related]