These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 9211402
1. Evidence for K+ channels involvement in capillary sensing and for bidirectionality in capillary communication. Tyml K, Song H, Munoz P, Ouellette Y. Microvasc Res; 1997 May; 53(3):245-53. PubMed ID: 9211402 [Abstract] [Full Text] [Related]
2. Comparable effects of arteriolar and capillary stimuli on blood flow in rat skeletal muscle. Mitchell D, Yu J, Tyml K. Microvasc Res; 1997 Jan; 53(1):22-32. PubMed ID: 9056473 [Abstract] [Full Text] [Related]
3. Evidence for sensing and integration of biological signals by the capillary network. Song H, Tyml K. Am J Physiol; 1993 Oct; 265(4 Pt 2):H1235-42. PubMed ID: 8238410 [Abstract] [Full Text] [Related]
4. Capillary adrenoceptors in rat skeletal muscle. Yu J, Tyml K. Microvasc Res; 1997 May; 53(3):235-44. PubMed ID: 9211401 [Abstract] [Full Text] [Related]
5. Capillary and arteriolar responses to local vasodilators are impaired in a rat model of sepsis. Tyml K, Yu J, McCormack DG. J Appl Physiol (1985); 1998 Mar; 84(3):837-44. PubMed ID: 9480941 [Abstract] [Full Text] [Related]
6. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch. Conde CM, Cyrino FZ, Bottino DA, Gardette J, Bouskela E. Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224 [Abstract] [Full Text] [Related]
7. Microvascular flow response to localized application of norepinephrine on capillaries in rat and frog skeletal muscle. Dietrich HH, Tyml K. Microvasc Res; 1992 Jan; 43(1):73-86. PubMed ID: 1608342 [Abstract] [Full Text] [Related]
8. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions. Ungvari Z, Koller A. Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534 [Abstract] [Full Text] [Related]
9. Capillary as a communicating medium in the microvasculature. Dietrich HH, Tyml K. Microvasc Res; 1992 Jan; 43(1):87-99. PubMed ID: 1318992 [Abstract] [Full Text] [Related]
10. Effects of K+Channel blockers on acetylcholine-induced vasodilation in guinea-pig choroid. Tamai K, Suzuki H, Hashitani H, Shirai S, Ogura Y. Exp Eye Res; 1999 Jul; 69(1):85-90. PubMed ID: 10375452 [Abstract] [Full Text] [Related]
11. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus. Mayhan WG, Mayhan JF, Sun H, Patel KP. Microcirculation; 2004 Jul; 11(7):605-13. PubMed ID: 15513870 [Abstract] [Full Text] [Related]
12. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D, Simonsen U, Hernández M, García-Sacristán A. Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [Abstract] [Full Text] [Related]
13. Barium, TEA and sodium sensitive potassium channels are present in the human placental syncytiotrophoblast apical membrane. Díaz P, Vallejos C, Guerrero I, Riquelme G. Placenta; 2008 Oct; 29(10):883-91. PubMed ID: 18708253 [Abstract] [Full Text] [Related]
14. Nitric oxide release in rat skeletal muscle capillary. Mitchell D, Tyml K. Am J Physiol; 1996 May; 270(5 Pt 2):H1696-703. PubMed ID: 8928876 [Abstract] [Full Text] [Related]