These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 9218446
21. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. Yoshida T, Willardson BM, Wilkins JF, Jensen GJ, Thornton BD, Bitensky MW. J Biol Chem; 1994 Sep 30; 269(39):24050-7. PubMed ID: 7929057 [Abstract] [Full Text] [Related]
22. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Nair KS, Balasubramanian N, Slepak VZ. Curr Biol; 2002 Mar 05; 12(5):421-5. PubMed ID: 11882295 [Abstract] [Full Text] [Related]
23. The influence of arrestin (48K protein) and rhodopsin kinase on visual transduction. Palczewski K, Rispoli G, Detwiler PB. Neuron; 1992 Jan 05; 8(1):117-26. PubMed ID: 1309646 [Abstract] [Full Text] [Related]
24. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Vishnivetskiy SA, Ostermaier MK, Singhal A, Panneels V, Homan KT, Glukhova A, Sligar SG, Tesmer JJ, Schertler GF, Standfuss J, Gurevich VV. Cell Signal; 2013 Nov 05; 25(11):2155-62. PubMed ID: 23872075 [Abstract] [Full Text] [Related]
25. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV. J Biol Chem; 2011 Jan 14; 286(2):1420-8. PubMed ID: 20966068 [Abstract] [Full Text] [Related]
27. Regulation of rhodopsin kinase by autophosphorylation. Buczyłko J, Gutmann C, Palczewski K. Proc Natl Acad Sci U S A; 1991 Mar 15; 88(6):2568-72. PubMed ID: 2006192 [Abstract] [Full Text] [Related]
28. Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ. Neuron; 2005 May 19; 46(4):555-67. PubMed ID: 15944125 [Abstract] [Full Text] [Related]
29. Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin. Ascano MT, Smith WC, Gregurick SK, Robinson PR. Mol Vis; 2006 Dec 05; 12():1516-25. PubMed ID: 17167410 [Abstract] [Full Text] [Related]
30. A C-terminal peptide of bovine rhodopsin binds to the transducin alpha-subunit and facilitates its activation. Phillips WJ, Cerione RA. Biochem J; 1994 Apr 15; 299 ( Pt 2)(Pt 2):351-7. PubMed ID: 8172594 [Abstract] [Full Text] [Related]
31. Control of rhodopsin multiple phosphorylation. Ohguro H, Johnson RS, Ericsson LH, Walsh KA, Palczewski K. Biochemistry; 1994 Feb 01; 33(4):1023-8. PubMed ID: 8305429 [Abstract] [Full Text] [Related]
32. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY. J Neurosci; 2006 Jan 25; 26(4):1146-53. PubMed ID: 16436601 [Abstract] [Full Text] [Related]
33. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. Zhu X, Brown B, Li A, Mears AJ, Swaroop A, Craft CM. J Neurosci; 2003 Jul 09; 23(14):6152-60. PubMed ID: 12853434 [Abstract] [Full Text] [Related]
34. Assays for activation of opsin by all-trans-retinal. Sachs K, Maretzki D, Hofmann KP. Methods Enzymol; 2000 Jul 09; 315():238-51. PubMed ID: 10736706 [Abstract] [Full Text] [Related]
35. Structural and enzymatic aspects of rhodopsin phosphorylation. Ohguro H, Rudnicka-Nawrot M, Buczyłko J, Zhao X, Taylor JA, Walsh KA, Palczewski K. J Biol Chem; 1996 Mar 01; 271(9):5215-24. PubMed ID: 8617805 [Abstract] [Full Text] [Related]
36. Modulation of mouse rod response decay by rhodopsin kinase and recoverin. Chen CK, Woodruff ML, Chen FS, Chen Y, Cilluffo MC, Tranchina D, Fain GL. J Neurosci; 2012 Nov 07; 32(45):15998-6006. PubMed ID: 23136436 [Abstract] [Full Text] [Related]
37. Rhodopsin's carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro. Brannock MT, Weng K, Robinson PR. Biochemistry; 1999 Mar 23; 38(12):3770-7. PubMed ID: 10090766 [Abstract] [Full Text] [Related]
38. Role of Monomer/Tetramer Equilibrium of Rod Visual Arrestin in the Interaction with Phosphorylated Rhodopsin. Imamoto Y, Kojima K, Maeda R, Shichida Y, Oka T. Int J Mol Sci; 2023 Mar 04; 24(5):. PubMed ID: 36902393 [Abstract] [Full Text] [Related]
39. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. Klenchin VA, Calvert PD, Bownds MD. J Biol Chem; 1995 Jul 07; 270(27):16147-52. PubMed ID: 7608179 [Abstract] [Full Text] [Related]
40. The role of arrestin and retinoids in the regeneration pathway of rhodopsin. Hofmann KP, Pulvermüller A, Buczyłko J, Van Hooser P, Palczewski K. J Biol Chem; 1992 Aug 05; 267(22):15701-6. PubMed ID: 1386362 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]