These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 9220963

  • 21. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X, Minasov G, Shoichet BK.
    Proteins; 2002 Apr 01; 47(1):86-96. PubMed ID: 11870868
    [Abstract] [Full Text] [Related]

  • 22. Structure of circularly permuted DsbA(Q100T99): preserved global fold and local structural adjustments.
    Manjasetty BA, Hennecke J, Glockshuber R, Heinemann U.
    Acta Crystallogr D Biol Crystallogr; 2004 Feb 01; 60(Pt 2):304-9. PubMed ID: 14747707
    [Abstract] [Full Text] [Related]

  • 23. Crystal structure of the sensor domain of the BlaR penicillin receptor from Bacillus licheniformis.
    Kerff F, Charlier P, Colombo ML, Sauvage E, Brans A, Frère JM, Joris B, Fonzé E.
    Biochemistry; 2003 Nov 11; 42(44):12835-43. PubMed ID: 14596597
    [Abstract] [Full Text] [Related]

  • 24. X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid.
    Swarén P, Golemi D, Cabantous S, Bulychev A, Maveyraud L, Mobashery S, Samama JP.
    Biochemistry; 1999 Jul 27; 38(30):9570-6. PubMed ID: 10423234
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis.
    Chen CC, Rahil J, Pratt RF, Herzberg O.
    J Mol Biol; 1993 Nov 05; 234(1):165-78. PubMed ID: 8230196
    [Abstract] [Full Text] [Related]

  • 27. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases.
    Maveyraud L, Pratt RF, Samama JP.
    Biochemistry; 1998 Feb 24; 37(8):2622-8. PubMed ID: 9485412
    [Abstract] [Full Text] [Related]

  • 28. The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain.
    Janscak P, Bickle TA.
    J Mol Biol; 1998 Dec 11; 284(4):937-48. PubMed ID: 9837717
    [Abstract] [Full Text] [Related]

  • 29. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant.
    Sun T, Bethel CR, Bonomo RA, Knox JR.
    Biochemistry; 2004 Nov 09; 43(44):14111-7. PubMed ID: 15518561
    [Abstract] [Full Text] [Related]

  • 30. Relocation or duplication of the helix A sequence of T4 lysozyme causes only modest changes in structure but can increase or decrease the rate of folding.
    Sagermann M, Baase WA, Mooers BH, Gay L, Matthews BW.
    Biochemistry; 2004 Feb 10; 43(5):1296-301. PubMed ID: 14756565
    [Abstract] [Full Text] [Related]

  • 31. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
    Li Z, Rasmussen BA, Herzberg O.
    Protein Sci; 1999 Jan 10; 8(1):249-52. PubMed ID: 10210203
    [Abstract] [Full Text] [Related]

  • 32. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99.
    Adediran SA, Zhang Z, Nukaga M, Palzkill T, Pratt RF.
    Biochemistry; 2005 May 24; 44(20):7543-52. PubMed ID: 15895997
    [Abstract] [Full Text] [Related]

  • 33. TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant.
    Fonzé E, Charlier P, To'th Y, Vermeire M, Raquet X, Dubus A, Frère JM.
    Acta Crystallogr D Biol Crystallogr; 1995 Sep 01; 51(Pt 5):682-94. PubMed ID: 15299797
    [Abstract] [Full Text] [Related]

  • 34. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C beta-lactamase.
    Kim JY, Jung HI, An YJ, Lee JH, Kim SJ, Jeong SH, Lee KJ, Suh PG, Lee HS, Lee SH, Cha SS.
    Mol Microbiol; 2006 May 01; 60(4):907-16. PubMed ID: 16677302
    [Abstract] [Full Text] [Related]

  • 35. Modeling study on a hydrolytic mechanism of class A beta-lactamases.
    Ishiguro M, Imajo S.
    J Med Chem; 1996 May 24; 39(11):2207-18. PubMed ID: 8667364
    [Abstract] [Full Text] [Related]

  • 36. Relocation of the catalytic carboxylate group in class A beta-lactamase: the structure and function of the mutant enzyme Glu166-->Gln:Asn170-->Asp.
    Chen CC, Herzberg O.
    Protein Eng; 1999 Jul 24; 12(7):573-9. PubMed ID: 10436083
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R, Pratt RF.
    Biochemistry; 2004 Aug 03; 43(30):9664-73. PubMed ID: 15274621
    [Abstract] [Full Text] [Related]

  • 39. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins.
    Meroueh SO, Minasov G, Lee W, Shoichet BK, Mobashery S.
    J Am Chem Soc; 2003 Aug 13; 125(32):9612-8. PubMed ID: 12904027
    [Abstract] [Full Text] [Related]

  • 40. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
    Chantalat L, Duée E, Galleni M, Frère JM, Dideberg O.
    Protein Sci; 2000 Jul 13; 9(7):1402-6. PubMed ID: 10933508
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.