These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 9223494

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62. Human immunodeficiency virus type 1 transductive recombination can occur frequently and in proportion to polyadenylation signal readthrough.
    An W, Telesnitsky A.
    J Virol; 2004 Apr; 78(7):3419-28. PubMed ID: 15016864
    [Abstract] [Full Text] [Related]

  • 63. Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication.
    Kim T, Mudry RA, Rexrode CA, Pathak VK.
    J Virol; 1996 Nov; 70(11):7594-602. PubMed ID: 8892879
    [Abstract] [Full Text] [Related]

  • 64.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 65. Partial reconstitution of a replication-competent retrovirus in helper cells with partial overlaps between vector and helper cell genomes.
    Martinez I, Dornburg R.
    Hum Gene Ther; 1996 Apr 10; 7(6):705-12. PubMed ID: 8919592
    [Abstract] [Full Text] [Related]

  • 66. Structural determinants of murine leukemia virus reverse transcriptase that affect the frequency of template switching.
    Svarovskaia ES, Delviks KA, Hwang CK, Pathak VK.
    J Virol; 2000 Aug 10; 74(15):7171-8. PubMed ID: 10888659
    [Abstract] [Full Text] [Related]

  • 67. Retroviral recombination is temperature dependent.
    Li T, Zhang J.
    J Gen Virol; 2001 Jun 10; 82(Pt 6):1359-1364. PubMed ID: 11369880
    [Abstract] [Full Text] [Related]

  • 68. Capture of a recombination activating sequence from mammalian cells.
    Olson P, Dornburg R.
    Gene Ther; 1999 Nov 10; 6(11):1819-25. PubMed ID: 10602377
    [Abstract] [Full Text] [Related]

  • 69. Direct demonstration of retroviral recombination in a rhesus monkey.
    Wooley DP, Smith RA, Czajak S, Desrosiers RC.
    J Virol; 1997 Dec 10; 71(12):9650-3. PubMed ID: 9371629
    [Abstract] [Full Text] [Related]

  • 70. Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots.
    Zhuang J, Jetzt AE, Sun G, Yu H, Klarmann G, Ron Y, Preston BD, Dougherty JP.
    J Virol; 2002 Nov 10; 76(22):11273-82. PubMed ID: 12388687
    [Abstract] [Full Text] [Related]

  • 71. High rate of recombination throughout the human immunodeficiency virus type 1 genome.
    Jetzt AE, Yu H, Klarmann GJ, Ron Y, Preston BD, Dougherty JP.
    J Virol; 2000 Feb 10; 74(3):1234-40. PubMed ID: 10627533
    [Abstract] [Full Text] [Related]

  • 72. Simplified generation of high-titer retrovirus producer cells for clinically relevant retroviral vectors by reversible inclusion of a lox-P-flanked marker gene.
    Loew R, Selevsek N, Fehse B, von Laer D, Baum C, Fauser A, Kuehlcke K.
    Mol Ther; 2004 May 10; 9(5):738-46. PubMed ID: 15120335
    [Abstract] [Full Text] [Related]

  • 73. High rates of frameshift mutations within homo-oligomeric runs during a single cycle of retroviral replication.
    Burns DP, Temin HM.
    J Virol; 1994 Jul 10; 68(7):4196-203. PubMed ID: 7515970
    [Abstract] [Full Text] [Related]

  • 74. Molecular requirements for immunoglobulin heavy chain constant region gene switch-recombination revealed with switch-substrate retroviruses.
    Ott DE, Marcu KB.
    Int Immunol; 1989 Jul 10; 1(6):582-91. PubMed ID: 2489045
    [Abstract] [Full Text] [Related]

  • 75. High rates of human immunodeficiency virus type 1 recombination: near-random segregation of markers one kilobase apart in one round of viral replication.
    Rhodes T, Wargo H, Hu WS.
    J Virol; 2003 Oct 10; 77(20):11193-200. PubMed ID: 14512567
    [Abstract] [Full Text] [Related]

  • 76. Using RT-prone recombination to promote re-building of complete retroviral vectors from two defective precursors: low efficiency and sequence specificities.
    Bru T, Galetto R, Piver E, Collin C, Negroni M, Pagès JC.
    J Virol Methods; 2007 Jun 10; 142(1-2):118-26. PubMed ID: 17336399
    [Abstract] [Full Text] [Related]

  • 77. Mutations of the kissing-loop dimerization sequence influence the site specificity of murine leukemia virus recombination in vivo.
    Mikkelsen JG, Lund AH, Duch M, Pedersen FS.
    J Virol; 2000 Jan 10; 74(2):600-10. PubMed ID: 10623721
    [Abstract] [Full Text] [Related]

  • 78. Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching.
    Hwang CK, Svarovskaia ES, Pathak VK.
    Proc Natl Acad Sci U S A; 2001 Oct 09; 98(21):12209-14. PubMed ID: 11593039
    [Abstract] [Full Text] [Related]

  • 79. Inducible yeast system for Viral RNA recombination reveals requirement for an RNA replication signal on both parental RNAs.
    Garcia-Ruiz H, Ahlquist P.
    J Virol; 2006 Sep 09; 80(17):8316-28. PubMed ID: 16912283
    [Abstract] [Full Text] [Related]

  • 80. Retroviral recombination during reverse transcription.
    Goodrich DW, Duesberg PH.
    Proc Natl Acad Sci U S A; 1990 Mar 09; 87(6):2052-6. PubMed ID: 1690424
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.