These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 9223681

  • 1. Intracellular calcium chelator BAPTA protects cells against toxic calcium overload but also alters physiological calcium responses.
    Collatz MB, Rüdel R, Brinkmeier H.
    Cell Calcium; 1997 Jun; 21(6):453-9. PubMed ID: 9223681
    [Abstract] [Full Text] [Related]

  • 2. Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro.
    Tymianski M, Charlton MP, Carlen PL, Tator CH.
    J Neurophysiol; 1994 Oct; 72(4):1973-92. PubMed ID: 7823112
    [Abstract] [Full Text] [Related]

  • 3. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ, Depetris RS, Uchitel OD.
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [Abstract] [Full Text] [Related]

  • 4. Effects on K+ currents in rat cerebellar granule neurones of a membrane-permeable analogue of the calcium chelator BAPTA.
    Watkins CS, Mathie A.
    Br J Pharmacol; 1996 Aug; 118(7):1772-8. PubMed ID: 8842443
    [Abstract] [Full Text] [Related]

  • 5. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L, Tucker RW, Hennings H, Yuspa SH.
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators.
    Tymianski M, Spigelman I, Zhang L, Carlen PL, Tator CH, Charlton MP, Wallace MC.
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):911-23. PubMed ID: 7929656
    [Abstract] [Full Text] [Related]

  • 8. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+ chelators: effects of Ca2+ affinity, chelator structure and binding kinetics.
    Spigelman I, Tymianski M, Wallace CM, Carlen PL, Velumian AA.
    Neuroscience; 1996 Nov; 75(2):559-72. PubMed ID: 8931019
    [Abstract] [Full Text] [Related]

  • 9. Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.
    Jornot L, Petersen H, Junod AF.
    Biochem J; 1998 Oct 01; 335 ( Pt 1)(Pt 1):85-94. PubMed ID: 9742216
    [Abstract] [Full Text] [Related]

  • 10. Effects of cell-permeant calcium chelators on contractility in monkey basilar artery.
    Macdonald RL, Zhang J, Marton LS, Weir B.
    J Neurotrauma; 1999 Jan 01; 16(1):37-47. PubMed ID: 9989465
    [Abstract] [Full Text] [Related]

  • 11. Induction of apoptotic DNA fragmentation and c-jun downregulation in human myeloid leukemia cells by the permeant Ca2+ chelator BAPTA/AM.
    Grant S, Freemerman AJ, Gregory PC, Martin HA, Turner AJ, Mikkelsen R, Chelliah J, Yanovich S, Jarvis WD.
    Oncol Res; 1995 Jan 01; 7(7-8):381-92. PubMed ID: 8747601
    [Abstract] [Full Text] [Related]

  • 12. Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons.
    Ouanounou A, Zhang L, Tymianski M, Charlton MP, Wallace MC, Carlen PL.
    Neuroscience; 1996 Nov 01; 75(1):99-109. PubMed ID: 8923526
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol.
    Strayer DS, Hoek JB, Thomas AP, White MK.
    Biochem J; 1999 Nov 15; 344 Pt 1(Pt 1):39-46. PubMed ID: 10548531
    [Abstract] [Full Text] [Related]

  • 15. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB, Delaney KR, Tank DW.
    J Neurophysiol; 1996 Jul 15; 76(1):381-400. PubMed ID: 8836232
    [Abstract] [Full Text] [Related]

  • 16. Binding of iron and inhibition of iron-dependent oxidative cell injury by the "calcium chelator" 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA).
    Britigan BE, Rasmussen GT, Cox CD.
    Biochem Pharmacol; 1998 Feb 01; 55(3):287-95. PubMed ID: 9484794
    [Abstract] [Full Text] [Related]

  • 17. Role of Ca2+ in H+ transport by rabbit gastric glands studied with A23187 and BAPTA, an incorporated Ca2+ chelator.
    Michelangeli F, Ruiz MC, Fernández E, Ciarrocchi A.
    Biochim Biophys Acta; 1989 Jul 24; 983(1):82-90. PubMed ID: 2503036
    [Abstract] [Full Text] [Related]

  • 18. Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP.
    Crépel V, Ben-Ari Y.
    J Neurophysiol; 1996 Feb 24; 75(2):770-9. PubMed ID: 8714651
    [Abstract] [Full Text] [Related]

  • 19. Facilitation and delayed release at about 0 degree C at the frog neuromuscular junction: effects of calcium chelators, calcium transport inhibitors, and okadaic acid.
    Van der Kloot W, Molgó J.
    J Neurophysiol; 1993 Mar 24; 69(3):717-29. PubMed ID: 8385191
    [Abstract] [Full Text] [Related]

  • 20. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons.
    Schwindt PC, Spain WJ, Crill WE.
    Neuroscience; 1992 Mar 24; 47(3):571-8. PubMed ID: 1316566
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.