These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 9224564

  • 1. Mitochondrial and cytosolic rhodanese from liver of DAB-treated mice. III. Inhibition kinetic studies.
    Vazquez E, Gazzaniga S, Polo C, Batlle A.
    Cancer Biochem Biophys; 1997 Jun; 15(4):285-93. PubMed ID: 9224564
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. In vitro effect of cyanide, thiosulphate and S-adenosyl-L-methionine on the activity of rhodanese and other enzymes.
    Buzaleh AM, Vazquez ES, Del Carmen Batlle AM.
    Gen Pharmacol; 1991 Jun; 22(2):281-6. PubMed ID: 1647344
    [Abstract] [Full Text] [Related]

  • 7. New crystalline derivatives of bovine liver rhodanese.
    Berni R, Cannella C, Monaco HL, Rossi GL.
    Biochem Int; 1986 May; 12(5):733-40. PubMed ID: 3460592
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR, Horowitz PM.
    Biochim Biophys Acta; 1987 Jan 05; 911(1):102-8. PubMed ID: 3466649
    [Abstract] [Full Text] [Related]

  • 10. Inhibition of rat liver rhodanese by di-, tricarboxylic, and alpha-keto acids.
    Oi S.
    J Biochem; 1975 Oct 05; 78(4):825-34. PubMed ID: 1213990
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. [Effect of single exposure to the carcinogen 4-dimethylaminoazobenzene on several properties of rat liver mitochondria].
    Medvedeva ND, Khodosova IA.
    Tsitologiia; 1978 Oct 05; 20(10):1192-6. PubMed ID: 214910
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Rhodanese activity in different tissues of the ostrich.
    Eskandarzade N, Aminlari M, Golami S, Tavana M.
    Br Poult Sci; 2012 Oct 05; 53(2):270-3. PubMed ID: 22646793
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Heme biosynthesis pathway regulation in a model of hepatocarcinogenesis pre-initiation.
    Polo CF, Vazquez ES, Caballero F, Gerez E, Battle AM.
    Comp Biochem Physiol B; 1992 Sep 05; 103(1):251-6. PubMed ID: 1451437
    [Abstract] [Full Text] [Related]

  • 18. The effect of sodium tetrathionate on cyanide conversion to thiocyanate by enzymatic and non-enzymatic mechanisms.
    Baskin SI, Kirby SD.
    J Appl Toxicol; 1990 Oct 05; 10(5):379-82. PubMed ID: 2254590
    [Abstract] [Full Text] [Related]

  • 19. Rhodanese activity and total sulfur content in frog and mouse liver.
    Wróbel M, Papla B.
    Folia Histochem Cytobiol; 2000 Oct 05; 38(1):11-7. PubMed ID: 10763118
    [Abstract] [Full Text] [Related]

  • 20. Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation.
    Horowitz PM, Bowman S.
    J Biol Chem; 1989 Feb 25; 264(6):3311-6. PubMed ID: 2914953
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.