These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 9224823

  • 1. Efficacy and kinetics of opioid action on acutely dissociated neurons.
    Ingram S, Wilding TJ, McCleskey EW, Williams JT.
    Mol Pharmacol; 1997 Jul; 52(1):136-43. PubMed ID: 9224823
    [Abstract] [Full Text] [Related]

  • 2. The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons.
    Chieng B, Connor M, Christie MJ.
    Mol Pharmacol; 1996 Sep; 50(3):650-5. PubMed ID: 8794906
    [Abstract] [Full Text] [Related]

  • 3. Opioid receptor-mediated inhibition of omega-conotoxin GVIA-sensitive calcium channel currents in rat intracardiac neurons.
    Adams DJ, Trequattrini C.
    J Neurophysiol; 1998 Feb; 79(2):753-62. PubMed ID: 9463438
    [Abstract] [Full Text] [Related]

  • 4. GABA(B), opioid and alpha2 receptor inhibition of calcium channels in acutely-dissociated locus coeruleus neurones.
    Chieng B, Bekkers JM.
    Br J Pharmacol; 1999 Aug; 127(7):1533-8. PubMed ID: 10455306
    [Abstract] [Full Text] [Related]

  • 5. Hyperpolarization by opioids acting on mu-receptors of a sub-population of rat periaqueductal gray neurones in vitro.
    Chieng B, Christie MJ.
    Br J Pharmacol; 1994 Sep; 113(1):121-8. PubMed ID: 7812601
    [Abstract] [Full Text] [Related]

  • 6. Single potassium channels opened by opioids in rat locus ceruleus neurons.
    Miyake M, Christie MJ, North RA.
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3419-22. PubMed ID: 2566172
    [Abstract] [Full Text] [Related]

  • 7. Activation of mu- and delta-opioid receptors present on the same nerve terminals depresses transmitter release in the mouse hypogastric ganglion.
    Rogers H, Henderson G.
    Br J Pharmacol; 1990 Nov; 101(3):505-12. PubMed ID: 1981687
    [Abstract] [Full Text] [Related]

  • 8. Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo.
    Kirby GC, McQueen DS.
    Br J Pharmacol; 1986 Aug; 88(4):889-98. PubMed ID: 2874862
    [Abstract] [Full Text] [Related]

  • 9. Interaction of naloxone with mu- and delta-opioid agonists on the respiration of rats.
    Pazos A, Flórez J.
    Eur J Pharmacol; 1983 Feb 18; 87(2-3):309-14. PubMed ID: 6301857
    [Abstract] [Full Text] [Related]

  • 10. Cellular mechanisms of opioid tolerance: studies in single brain neurons.
    Christie MJ, Williams JT, North RA.
    Mol Pharmacol; 1987 Nov 18; 32(5):633-8. PubMed ID: 2824980
    [Abstract] [Full Text] [Related]

  • 11. The antiproliferative effect of opioid receptor agonists on the T47D human breast cancer cell line, is partially mediated through opioid receptors.
    Hatzoglou A, Bakogeorgou E, Castanas E.
    Eur J Pharmacol; 1996 Jan 25; 296(2):199-207. PubMed ID: 8838457
    [Abstract] [Full Text] [Related]

  • 12. Continued morphine modulation of calcium channel currents in acutely isolated locus coeruleus neurons from morphine-dependent rats.
    Connor M, Borgland SL, Christie MJ.
    Br J Pharmacol; 1999 Dec 25; 128(7):1561-9. PubMed ID: 10602337
    [Abstract] [Full Text] [Related]

  • 13. Tolerance to mu-opioid receptor agonists but not cross-tolerance to gamma-aminobutyric acid(B) receptor agonists in arcuate A12 dopamine neurons with chronic morphine treatment.
    Wagner EJ, Zhang G, Lagrange AH, Rønnekleiv OK, Kelly MJ.
    J Pharmacol Exp Ther; 1997 Feb 25; 280(2):1057-64. PubMed ID: 9023324
    [Abstract] [Full Text] [Related]

  • 14. Opioid inhibition in locus coeruleus.
    Travagli RA, Dunwiddie TV, Williams JT.
    J Neurophysiol; 1995 Aug 25; 74(2):519-28. PubMed ID: 7472359
    [Abstract] [Full Text] [Related]

  • 15. Differential sensitivity of N- and P/Q-type Ca2+ channel currents to a mu opioid in isolectin B4-positive and -negative dorsal root ganglion neurons.
    Wu ZZ, Chen SR, Pan HL.
    J Pharmacol Exp Ther; 2004 Dec 25; 311(3):939-47. PubMed ID: 15280436
    [Abstract] [Full Text] [Related]

  • 16. Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells.
    Piros ET, Prather PL, Loh HH, Law PY, Evans CJ, Hales TG.
    Mol Pharmacol; 1995 May 25; 47(5):1041-9. PubMed ID: 7746271
    [Abstract] [Full Text] [Related]

  • 17. Action at the mu receptor is sufficient to explain the supraspinal analgesic effect of opiates.
    Fang FG, Fields HL, Lee NM.
    J Pharmacol Exp Ther; 1986 Sep 25; 238(3):1039-44. PubMed ID: 3018217
    [Abstract] [Full Text] [Related]

  • 18. Effects of naloxone and opioid agonists on gastric excitatory responses to stimulation of the vagus nerve in cats.
    Okamoto T, Kurahashi K, Fujiwara M.
    Br J Pharmacol; 1988 Oct 25; 95(2):329-34. PubMed ID: 2906554
    [Abstract] [Full Text] [Related]

  • 19. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons.
    Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K.
    J Neurosci; 2002 Jun 01; 22(11):4328-34. PubMed ID: 12040038
    [Abstract] [Full Text] [Related]

  • 20. mu-Opioid receptor inhibits N-type Ca2+ channels in the calyx presynaptic terminal of the embryonic chick ciliary ganglion.
    Endo K, Yawo H.
    J Physiol; 2000 May 01; 524 Pt 3(Pt 3):769-81. PubMed ID: 10790157
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.