These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 9230092

  • 1. Effects of thiol-modifying agents on a K(Ca2+) channel of intermediate conductance in bovine aortic endothelial cells.
    Cai S, Sauvé R.
    J Membr Biol; 1997 Jul 15; 158(2):147-58. PubMed ID: 9230092
    [Abstract] [Full Text] [Related]

  • 2. Nitric oxide and thiol reagent modulation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeci.
    Lang RJ, Harvey JR, McPhee GJ, Klemm MF.
    J Physiol; 2000 Jun 01; 525 Pt 2(Pt 2):363-76. PubMed ID: 10835040
    [Abstract] [Full Text] [Related]

  • 3. Effects of thiol-modifying agents on KATP channels in guinea pig ventricular cells.
    Coetzee WA, Nakamura TY, Faivre JF.
    Am J Physiol; 1995 Nov 01; 269(5 Pt 2):H1625-33. PubMed ID: 7503258
    [Abstract] [Full Text] [Related]

  • 4. Interaction between thiol-modifying agents and P1075, a K(ATP) channel opener, in rat isolated aorta.
    Linde C, Löffler C, Kessler C, Quast U.
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Oct 01; 356(4):467-74. PubMed ID: 9349633
    [Abstract] [Full Text] [Related]

  • 5. Contrasting effects of intracellular redox couples on the regulation of maxi-K channels in isolated myocytes from rabbit pulmonary artery.
    Thuringer D, Findlay I.
    J Physiol; 1997 May 01; 500 ( Pt 3)(Pt 3):583-92. PubMed ID: 9161977
    [Abstract] [Full Text] [Related]

  • 6. Redox modulation of calcium entry and release of intracellular calcium by thimerosal in GH4C1 pituitary cells.
    Karhapää L, Titievsky A, Kaila K, Törnquist K.
    Cell Calcium; 1996 Dec 01; 20(6):447-57. PubMed ID: 8985589
    [Abstract] [Full Text] [Related]

  • 7. Effects of halothane and isoflurane on bradykinin-evoked Ca2+ influx inbovine aortic endothelial cells.
    Simoneau C, Thuringer D, Cai S, Garneau L, Blaise G, Sauvé R.
    Anesthesiology; 1996 Aug 01; 85(2):366-79. PubMed ID: 8712453
    [Abstract] [Full Text] [Related]

  • 8. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS, Lamb GD.
    J Physiol; 1996 Nov 01; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [Abstract] [Full Text] [Related]

  • 9. Modulation of neuronal and recombinant GABAA receptors by redox reagents.
    Amato A, Connolly CN, Moss SJ, Smart TG.
    J Physiol; 1999 May 15; 517 ( Pt 1)(Pt 1):35-50. PubMed ID: 10226147
    [Abstract] [Full Text] [Related]

  • 10. Redox regulation of large conductance Ca(2+)-activated K+ channels in smooth muscle cells.
    Wang ZW, Nara M, Wang YX, Kotlikoff MI.
    J Gen Physiol; 1997 Jul 15; 110(1):35-44. PubMed ID: 9234169
    [Abstract] [Full Text] [Related]

  • 11. Sulfhydryl oxidation induces rapid and reversible closure of the ATP-regulated K+ channel in the pancreatic beta-cell.
    Islam MS, Berggren PO, Larsson O.
    FEBS Lett; 1993 Mar 15; 319(1-2):128-32. PubMed ID: 8454044
    [Abstract] [Full Text] [Related]

  • 12. Single-channel characterization of the pharmacological properties of the K(Ca2+) channel of intermediate conductance in bovine aortic endothelial cells.
    Cai S, Garneau L, Sauvé R.
    J Membr Biol; 1998 May 15; 163(2):147-58. PubMed ID: 9592079
    [Abstract] [Full Text] [Related]

  • 13. Transient forebrain ischemia induces persistent hyperactivity of large conductance Ca2+-activated potassium channels via oxidation modulation in rat hippocampal CA1 pyramidal neurons.
    Gong LW, Gao TM, Huang H, Zhuang ZY, Tong Z.
    Eur J Neurosci; 2002 Feb 15; 15(4):779-83. PubMed ID: 11886457
    [Abstract] [Full Text] [Related]

  • 14. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J, Tanzi F, van Breemen C, Adams DJ.
    J Physiol; 1992 Sep 15; 455():601-21. PubMed ID: 1484364
    [Abstract] [Full Text] [Related]

  • 15. Mechanism of inhibitory actions of oxidizing agents on calcium-activated potassium current in cultured pigment epithelial cells of the human retina.
    Sheu SJ, Wu SN.
    Invest Ophthalmol Vis Sci; 2003 Mar 15; 44(3):1237-44. PubMed ID: 12601054
    [Abstract] [Full Text] [Related]

  • 16. Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels.
    Chiamvimonvat N, O'Rourke B, Kamp TJ, Kallen RG, Hofmann F, Flockerzi V, Marban E.
    Circ Res; 1995 Mar 15; 76(3):325-34. PubMed ID: 7859379
    [Abstract] [Full Text] [Related]

  • 17. Redox modulation of large conductance calcium-activated potassium channels in CA1 pyramidal neurons from adult rat hippocampus.
    Gong L, Gao TM, Huang H, Tong Z.
    Neurosci Lett; 2000 Jun 09; 286(3):191-4. PubMed ID: 10832017
    [Abstract] [Full Text] [Related]

  • 18. Differential modulation of voltage-dependent K+ currents in colonic smooth muscle by oxidants.
    Prasad M, Goyal RK.
    Am J Physiol Cell Physiol; 2004 Mar 09; 286(3):C671-82. PubMed ID: 14613888
    [Abstract] [Full Text] [Related]

  • 19. Redox agents as a link between hypoxia and the responses of ionic channels in rabbit pulmonary vascular smooth muscle.
    Park MK, Lee SH, Ho WK, Earm YE.
    Exp Physiol; 1995 Sep 09; 80(5):835-42. PubMed ID: 8546872
    [Abstract] [Full Text] [Related]

  • 20. Sulfhydryl oxidation reduces hippocampal susceptibility to hypoxia-induced spreading depression by activating BK channels.
    Hepp S, Gerich FJ, Müller M.
    J Neurophysiol; 2005 Aug 09; 94(2):1091-103. PubMed ID: 15872065
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.