These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 9232202

  • 1. The increased skeletal muscle protein turnover of the streptozotocin diabetic rat is associated with high concentrations of branched-chain amino acids.
    Rodríguez T, Alvarez B, Busquets S, Carbó N, López-Soriano FJ, Argilés JM.
    Biochem Mol Med; 1997 Jun; 61(1):87-94. PubMed ID: 9232202
    [Abstract] [Full Text] [Related]

  • 2. Protein turnover in skeletal muscle of the diabetic rat: activation of ubiquitin-dependent proteolysis.
    Rodríguez T, Busquets S, Alvarez B, Carb N, Agell N, Lpez-Soriano FJ, Argilś JM.
    Int J Mol Med; 1998 Jun; 1(6):971-7. PubMed ID: 9852633
    [Abstract] [Full Text] [Related]

  • 3. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z.
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [Abstract] [Full Text] [Related]

  • 4. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis.
    Holeček M, Vodeničarovová M.
    Int J Exp Pathol; 2018 Dec; 99(6):274-281. PubMed ID: 30637824
    [Abstract] [Full Text] [Related]

  • 5. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle.
    Holecek M, Kandar R, Sispera L, Kovarik M.
    Amino Acids; 2011 Feb; 40(2):575-84. PubMed ID: 20614225
    [Abstract] [Full Text] [Related]

  • 6. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs.
    Zheng L, Zuo F, Zhao S, He P, Wei H, Xiang Q, Pang J, Peng J.
    Br J Nutr; 2017 Apr; 117(7):911-922. PubMed ID: 28446262
    [Abstract] [Full Text] [Related]

  • 7. Leucine oxidation and protein turnover in clofibrate-induced muscle protein degradation in rats.
    Paul HS, Adibi SA.
    J Clin Invest; 1980 Jun; 65(6):1285-93. PubMed ID: 7410544
    [Abstract] [Full Text] [Related]

  • 8. Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats.
    Holecek M, Vodenicarovova M, Siman P.
    Int J Exp Pathol; 2017 Jun; 98(3):127-133. PubMed ID: 28621016
    [Abstract] [Full Text] [Related]

  • 9. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats.
    Holecek M, Sispera L.
    Amino Acids; 2014 May; 46(5):1377-84. PubMed ID: 24609272
    [Abstract] [Full Text] [Related]

  • 10. [Glutamine and branched-chain amino acids--practical importance of their metabolic relations].
    Holecek M.
    Cas Lek Cesk; 2005 May; 144 Suppl 3():9-12. PubMed ID: 16335256
    [Abstract] [Full Text] [Related]

  • 11. Branched chain amino acids improve body composition and nitrogen balance in a rat model of extra hepatic biliary atresia.
    Sokal EM, Baudoux MC, Collette E, Hausleithner V, Lambotte L, Buts JP.
    Pediatr Res; 1996 Jul; 40(1):66-71. PubMed ID: 8798248
    [Abstract] [Full Text] [Related]

  • 12. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease.
    Hutson SM, Harper AE.
    Am J Clin Nutr; 1981 Feb; 34(2):173-83. PubMed ID: 7211722
    [Abstract] [Full Text] [Related]

  • 13. Branched-chain amino acids reduce hindlimb suspension-induced muscle atrophy and protein levels of atrogin-1 and MuRF1 in rats.
    Maki T, Yamamoto D, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y.
    Nutr Res; 2012 Sep; 32(9):676-83. PubMed ID: 23084640
    [Abstract] [Full Text] [Related]

  • 14. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats.
    Aftring RP, Manos PN, Buse MG.
    Metabolism; 1985 Aug; 34(8):702-11. PubMed ID: 4021802
    [Abstract] [Full Text] [Related]

  • 15. Effect of alanyl-glutamine on leucine and protein metabolism in endotoxemic rats.
    Holecek M, Skopec F, Skalská H, Sprongl L.
    JPEN J Parenter Enteral Nutr; 2000 Aug; 24(4):215-22. PubMed ID: 10885715
    [Abstract] [Full Text] [Related]

  • 16. Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism.
    Hernández-Alvarez MI, Díaz-Ramos A, Berdasco M, Cobb J, Planet E, Cooper D, Pazderska A, Wanic K, O'Hanlon D, Gomez A, de la Ballina LR, Esteller M, Palacin M, O'Gorman DJ, Nolan JJ, Zorzano A.
    Sci Rep; 2017 Oct 23; 7(1):13850. PubMed ID: 29062026
    [Abstract] [Full Text] [Related]

  • 17. Nitrogen-sparing mechanisms of singly administered branched-chain amino acids in the injured rat.
    Freund HR, James JH, Fischer JE.
    Surgery; 1981 Aug 23; 90(2):237-43. PubMed ID: 7256539
    [Abstract] [Full Text] [Related]

  • 18. Response of muscle protein and glutamine kinetics to branched-chain-enriched amino acids in intensive care patients after radical cancer surgery.
    Biolo G, De Cicco M, Dal Mas V, Lorenzon S, Antonione R, Ciocchi B, Barazzoni R, Zanetti M, Dore F, Guarnieri G.
    Nutrition; 2006 May 23; 22(5):475-82. PubMed ID: 16472976
    [Abstract] [Full Text] [Related]

  • 19. Enhanced Glutamine Availability Exerts Different Effects on Protein and Amino Acid Metabolism in Skeletal Muscle From Healthy and Septic Rats.
    Holecek M, Sispera L, Skalska H.
    JPEN J Parenter Enteral Nutr; 2015 Sep 23; 39(7):847-54. PubMed ID: 24906686
    [Abstract] [Full Text] [Related]

  • 20. Branched chain amino acid metabolism in the retina of diabetic rats.
    Frayser R, Buse MG.
    Diabetologia; 1978 Mar 23; 14(3):171-6. PubMed ID: 658633
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.