These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
141 related items for PubMed ID: 9235907
1. Defects in auxiliary redox proteins lead to functional methionine synthase deficiency. Gulati S, Chen Z, Brody LC, Rosenblatt DS, Banerjee R. J Biol Chem; 1997 Aug 01; 272(31):19171-5. PubMed ID: 9235907 [Abstract] [Full Text] [Related]
2. Redundancy in the pathway for redox regulation of mammalian methionine synthase: reductive activation by the dual flavoprotein, novel reductase 1. Olteanu H, Banerjee R. J Biol Chem; 2003 Oct 03; 278(40):38310-4. PubMed ID: 12871938 [Abstract] [Full Text] [Related]
3. Methionine synthase exists in two distinct conformations that differ in reactivity toward methyltetrahydrofolate, adenosylmethionine, and flavodoxin. Jarrett JT, Huang S, Matthews RG. Biochemistry; 1998 Apr 21; 37(16):5372-82. PubMed ID: 9548919 [Abstract] [Full Text] [Related]
4. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. Olteanu H, Banerjee R. J Biol Chem; 2001 Sep 21; 276(38):35558-63. PubMed ID: 11466310 [Abstract] [Full Text] [Related]
5. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme. Jarrett JT, Hoover DM, Ludwig ML, Matthews RG. Biochemistry; 1998 Sep 08; 37(36):12649-58. PubMed ID: 9730838 [Abstract] [Full Text] [Related]
6. Changes in protonation associated with substrate binding and Cob(I)alamin formation in cobalamin-dependent methionine synthase. Jarrett JT, Choi CY, Matthews RG. Biochemistry; 1997 Dec 16; 36(50):15739-48. PubMed ID: 9398303 [Abstract] [Full Text] [Related]
7. Interaction of Escherichia coli cobalamin-dependent methionine synthase and its physiological partner flavodoxin: binding of flavodoxin leads to axial ligand dissociation from the cobalamin cofactor. Hoover DM, Jarrett JT, Sands RH, Dunham WR, Ludwig ML, Matthews RG. Biochemistry; 1997 Jan 07; 36(1):127-38. PubMed ID: 8993326 [Abstract] [Full Text] [Related]
8. Heterogeneity in cblG: differential retention of cobalamin on methionine synthase. Sillaots SL, Hall CA, Hurteloup V, Rosenblatt DS. Biochem Med Metab Biol; 1992 Jun 07; 47(3):242-9. PubMed ID: 1627355 [Abstract] [Full Text] [Related]
9. Functional methionine synthase deficiency (cblE and cblG): clinical and biochemical heterogeneity. Watkins D, Rosenblatt DS. Am J Med Genet; 1989 Nov 07; 34(3):427-34. PubMed ID: 2688421 [Abstract] [Full Text] [Related]
10. Purification of soluble cytochrome b5 as a component of the reductive activation of porcine methionine synthase. Chen Z, Banerjee R. J Biol Chem; 1998 Oct 02; 273(40):26248-55. PubMed ID: 9748308 [Abstract] [Full Text] [Related]
11. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA. Proc Natl Acad Sci U S A; 1998 Mar 17; 95(6):3059-64. PubMed ID: 9501215 [Abstract] [Full Text] [Related]
12. The structure of the C-terminal domain of methionine synthase: presenting S-adenosylmethionine for reductive methylation of B12. Dixon MM, Huang S, Matthews RG, Ludwig M. Structure; 1996 Nov 15; 4(11):1263-75. PubMed ID: 8939751 [Abstract] [Full Text] [Related]
13. Functionally null mutations in patients with the cblG-variant form of methionine synthase deficiency. Wilson A, Leclerc D, Saberi F, Campeau E, Hwang HY, Shane B, Phillips JA, Rosenblatt DS, Gravel RA. Am J Hum Genet; 1998 Aug 15; 63(2):409-14. PubMed ID: 9683607 [Abstract] [Full Text] [Related]
14. Methionine auxotrophy in inborn errors of cobalamin metabolism. Garovic-Kocic V, Rosenblatt DS. Clin Invest Med; 1992 Aug 15; 15(4):395-400. PubMed ID: 1516297 [Abstract] [Full Text] [Related]
15. Interaction of flavodoxin with cobalamin-dependent methionine synthase. Hall DA, Jordan-Starck TC, Loo RO, Ludwig ML, Matthews RG. Biochemistry; 2000 Sep 05; 39(35):10711-9. PubMed ID: 10978155 [Abstract] [Full Text] [Related]
16. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine. Goulding CW, Postigo D, Matthews RG. Biochemistry; 1997 Jul 01; 36(26):8082-91. PubMed ID: 9201956 [Abstract] [Full Text] [Related]
17. Defects in human methionine synthase in cblG patients. Gulati S, Baker P, Li YN, Fowler B, Kruger W, Brody LC, Banerjee R. Hum Mol Genet; 1996 Dec 01; 5(12):1859-65. PubMed ID: 8968736 [Abstract] [Full Text] [Related]
18. Nitrous oxide degradation by cobalamin-dependent methionine synthase: characterization of the reactants and products in the inactivation reaction. Drummond JT, Matthews RG. Biochemistry; 1994 Mar 29; 33(12):3732-41. PubMed ID: 8142373 [Abstract] [Full Text] [Related]
19. Genetic heterogeneity among patients with methylcobalamin deficiency. Definition of two complementation groups, cblE and cblG. Watkins D, Rosenblatt DS. J Clin Invest; 1988 Jun 29; 81(6):1690-4. PubMed ID: 3384945 [Abstract] [Full Text] [Related]
20. Protein interactions in the human methionine synthase-methionine synthase reductase complex and implications for the mechanism of enzyme reactivation. Wolthers KR, Scrutton NS. Biochemistry; 2007 Jun 12; 46(23):6696-709. PubMed ID: 17477549 [Abstract] [Full Text] [Related] Page: [Next] [New Search]