These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 9237392
41. Reduction of D-lactate content in sauerkraut using starter cultures of recombinant Leuconostoc mesenteroides expressing the ldhL gene. Jin Q, Li L, Moon JS, Cho SK, Kim YJ, Lee SJ, Han NS. J Biosci Bioeng; 2016 May; 121(5):479-83. PubMed ID: 26472127 [Abstract] [Full Text] [Related]
42. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Ricciardi A, Storti LV, Giavalisco M, Parente E, Zotta T. Foods; 2022 Feb 13; 11(4):. PubMed ID: 35206012 [Abstract] [Full Text] [Related]
43. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Zhang B, Li XL, Fu J, Li N, Wang Z, Tang YJ, Chen T. PLoS One; 2016 Feb 13; 11(7):e0159298. PubMed ID: 27467131 [Abstract] [Full Text] [Related]
44. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Gao J, Xu YY, Li FW, Ding G. Lett Appl Microbiol; 2013 Oct 13; 57(4):274-81. PubMed ID: 23701367 [Abstract] [Full Text] [Related]
45. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. Le Bars D, Yvon M. J Appl Microbiol; 2008 Jan 13; 104(1):171-7. PubMed ID: 17850313 [Abstract] [Full Text] [Related]
46. Genetic organization and expression of citrate permease in lactic acid bacteria. Drider D, Bekal S, Prévost H. Genet Mol Res; 2004 Jun 30; 3(2):273-81. PubMed ID: 15266398 [Abstract] [Full Text] [Related]
47. The 'buttery' attribute of wine--diacetyl--desirability, spoilage and beyond. Bartowsky EJ, Henschke PA. Int J Food Microbiol; 2004 Nov 15; 96(3):235-52. PubMed ID: 15454314 [Abstract] [Full Text] [Related]
48. Oversynthesis of diacetyl and acetoin in a riboflavin deficient mutant of yeast. Nakajima K, Saito A. Int J Vitam Nutr Res; 1987 Nov 15; 57(3):279-83. PubMed ID: 3316092 [Abstract] [Full Text] [Related]
49. Genetic organization of the citCDEF locus and identification of mae and clyR genes from Leuconostoc mesenteroides. Bekal-Si Ali S, Diviès C, Prévost H. J Bacteriol; 1999 Jul 15; 181(14):4411-6. PubMed ID: 10400601 [Abstract] [Full Text] [Related]
50. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii. Nakajima K, Mitsuda H. Acta Vitaminol Enzymol; 1984 Jul 15; 6(4):271-82. PubMed ID: 6534171 [Abstract] [Full Text] [Related]
51. Effect of Initial Oxygen Concentration on Diacetyl and Acetoin Production by Lactococcus lactis subsp. lactis biovar diacetylactis. Bassit N, Boquien CY, Picque D, Corrieu G. Appl Environ Microbiol; 1993 Jun 15; 59(6):1893-7. PubMed ID: 16348966 [Abstract] [Full Text] [Related]
52. Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei. Viana R, Yebra MJ, Galán JL, Monedero V, Pérez-Martínez G. Res Microbiol; 2005 Jun 15; 156(5-6):641-9. PubMed ID: 15882939 [Abstract] [Full Text] [Related]
53. Degradation of organic acids by dairy lactic acid bacteria. Hegazi FZ, Abo-Elnaga IG. Zentralbl Bakteriol Naturwiss; 1980 Jun 15; 135(3):212-22. PubMed ID: 6775434 [Abstract] [Full Text] [Related]
54. Characters of Lactobacillus coryniformis, isolated from an Iraqi cheese. Hegazi FZ, Abo-Elnaga IG. Zentralbl Bakteriol Naturwiss; 1980 Jun 15; 135(3):205-11. PubMed ID: 7424219 [Abstract] [Full Text] [Related]
55. Citrate uptake in exchange with intermediates in the citrate metabolic pathway in Lactococcus lactis IL1403. Pudlik AM, Lolkema JS. J Bacteriol; 2011 Feb 15; 193(3):706-14. PubMed ID: 21115655 [Abstract] [Full Text] [Related]
56. The citrate metabolic pathway in Leuconostoc mesenteroides: expression, amino acid synthesis, and alpha-ketocarboxylate transport. Marty-Teysset C, Lolkema JS, Schmitt P, Diviès C, Konings WN. J Bacteriol; 1996 Nov 15; 178(21):6209-15. PubMed ID: 8892820 [Abstract] [Full Text] [Related]
57. The response of Leuconostoc mesenteroides to low external oxidoreduction potential generated by hydrogen gas. Bourel G, Henini S, Diviès C, Garmyn D. J Appl Microbiol; 2003 Nov 15; 94(2):280-8. PubMed ID: 12534820 [Abstract] [Full Text] [Related]
58. Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase. Li L, Shin SY, Lee KW, Han NS. Lett Appl Microbiol; 2014 Oct 15; 59(4):404-11. PubMed ID: 24888766 [Abstract] [Full Text] [Related]
59. Evidence for a chromosomally determined mesenterocin, a bacteriocin produced by Leuconostoc mesenteroides subsp. mesenteroides OZ. Osmanagaoglu O, Kiran F. J Basic Microbiol; 2011 Jun 15; 51(3):279-88. PubMed ID: 21298683 [Abstract] [Full Text] [Related]
60. Diacetyl and acetoin production by Lactobacillus casei. Branen AL, Keenan TW. Appl Microbiol; 1971 Oct 15; 22(4):517-21. PubMed ID: 4943268 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]