These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 9237433
21. Complexity affects regional cerebral blood flow change during sequential finger movements. Sadato N, Campbell G, Ibáñez V, Deiber M, Hallett M. J Neurosci; 1996 Apr 15; 16(8):2691-700. PubMed ID: 8786445 [Abstract] [Full Text] [Related]
22. Comparison of auditory, somatosensory, and visually instructed and internally generated finger movements: a PET study. Weeks RA, Honda M, Catalan MJ, Hallett M. Neuroimage; 2001 Jul 15; 14(1 Pt 1):219-30. PubMed ID: 11525332 [Abstract] [Full Text] [Related]
23. The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M. Brain; 1998 Feb 15; 121 ( Pt 2)():253-64. PubMed ID: 9549504 [Abstract] [Full Text] [Related]
24. The pre-supplementary and primary motor areas generate rhythm for voluntary eye opening and closing movements. Suzuki Y, Kiyosawa M, Mochizuki M, Ishiwata K, Ishii K. Tohoku J Exp Med; 2010 Oct 15; 222(2):97-104. PubMed ID: 20877165 [Abstract] [Full Text] [Related]
25. Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement. Kawashima R, Yamada K, Kinomura S, Yamaguchi T, Matsui H, Yoshioka S, Fukuda H. Brain Res; 1993 Sep 24; 623(1):33-40. PubMed ID: 8221091 [Abstract] [Full Text] [Related]
26. A functional magnetic resonance imaging study of paced finger tapping in children. Rivkin MJ, Vajapeyam S, Hutton C, Weiler ML, Hall EK, Wolraich DA, Yoo SS, Mulkern RV, Forbes PW, Wolff PH, Waber DP. Pediatr Neurol; 2003 Feb 24; 28(2):89-95. PubMed ID: 12699857 [Abstract] [Full Text] [Related]
27. Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography. Deiber MP, Ibañez V, Honda M, Sadato N, Raman R, Hallett M. Neuroimage; 1998 Feb 24; 7(2):73-85. PubMed ID: 9571132 [Abstract] [Full Text] [Related]
28. Relation between cerebral activity and force in the motor areas of the human brain. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D, Holmes A, Ridding MC, Brooks DJ, Frackowiak RS. J Neurophysiol; 1995 Aug 24; 74(2):802-15. PubMed ID: 7472384 [Abstract] [Full Text] [Related]
29. Functional asymmetry of cortical motor control in left-handed subjects. Kawashima R, Inoue K, Sato K, Fukuda H. Neuroreport; 1997 May 06; 8(7):1729-32. PubMed ID: 9189922 [Abstract] [Full Text] [Related]
30. Regional cerebral blood flow changes in motor cortical areas after transient anesthesia of the forearm. Sadato N, Zeffiro TA, Campbell G, Konishi J, Shibasaki H, Hallett M. Ann Neurol; 1995 Jan 06; 37(1):74-81. PubMed ID: 7818261 [Abstract] [Full Text] [Related]
31. Functional magnetic resonance imaging of complex human movements. Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD. Neurology; 1993 Nov 06; 43(11):2311-8. PubMed ID: 8232948 [Abstract] [Full Text] [Related]
32. 1-Hz repetitive TMS over ipsilateral motor cortex influences the performance of sequential finger movements of different complexity. Avanzino L, Bove M, Trompetto C, Tacchino A, Ogliastro C, Abbruzzese G. Eur J Neurosci; 2008 Mar 06; 27(5):1285-91. PubMed ID: 18312586 [Abstract] [Full Text] [Related]
33. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. Deiber MP, Honda M, Ibañez V, Sadato N, Hallett M. J Neurophysiol; 1999 Jun 06; 81(6):3065-77. PubMed ID: 10368421 [Abstract] [Full Text] [Related]
34. Effect of side and rate of stimulation on cerebral blood flow changes in motor areas during finger movements in humans. Sabatini U, Chollet F, Rascol O, Celsis P, Rascol A, Lenzi GL, Marc-Vergnes JP. J Cereb Blood Flow Metab; 1993 Jul 06; 13(4):639-45. PubMed ID: 8314917 [Abstract] [Full Text] [Related]
35. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. Fox PT, Fox JM, Raichle ME, Burde RM. J Neurophysiol; 1985 Aug 06; 54(2):348-69. PubMed ID: 3875696 [Abstract] [Full Text] [Related]
36. Movement- and task-related activations of motor cortical areas: a positron emission tomographic study. Remy P, Zilbovicius M, Leroy-Willig A, Syrota A, Samson Y. Ann Neurol; 1994 Jul 06; 36(1):19-26. PubMed ID: 8024256 [Abstract] [Full Text] [Related]
37. Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study. Boecker H, Kleinschmidt A, Requardt M, Hänicke W, Merboldt KD, Frahm J. Brain; 1994 Dec 06; 117 ( Pt 6)():1231-9. PubMed ID: 7820562 [Abstract] [Full Text] [Related]
38. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR. J Neurophysiol; 1996 Jan 06; 75(1):454-68. PubMed ID: 8822570 [Abstract] [Full Text] [Related]
39. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RS. J Neurophysiol; 1995 Jan 06; 73(1):373-86. PubMed ID: 7714579 [Abstract] [Full Text] [Related]
40. Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. Naito E, Kinomura S, Geyer S, Kawashima R, Roland PE, Zilles K. J Neurophysiol; 2000 Mar 06; 83(3):1701-9. PubMed ID: 10712490 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]