These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of lysine ionization on the structure and electrochemical behaviour of the Met44-->Lys mutant of the blue-copper protein azurin from Pseudomonas aeruginosa. Van de Kamp M, Canters GW, Andrew CR, Sanders-Loehr J, Bender CJ, Peisach J. Eur J Biochem; 1993 Nov 15; 218(1):229-38. PubMed ID: 8243468 [Abstract] [Full Text] [Related]
4. Pseudomonas aeruginosa cytochrome C(551): probing the role of the hydrophobic patch in electron transfer. Cutruzzolà F, Arese M, Ranghino G, van Pouderoyen G, Canters G, Brunori M. J Inorg Biochem; 2002 Feb 15; 88(3-4):353-61. PubMed ID: 11897350 [Abstract] [Full Text] [Related]
5. Site-directed mutagenesis of azurin from Pseudomonas aeruginosa enhances the formation of an electron-transfer complex with a copper-containing nitrite reductase from Alcaligenes faecalis S-6. Kukimoto M, Nishiyama M, Tanokura M, Murphy ME, Adman ET, Horinouchi S. FEBS Lett; 1996 Sep 23; 394(1):87-90. PubMed ID: 8925934 [Abstract] [Full Text] [Related]
6. [Oxidation by nitrite of azurin and cytochrome c-551 from Pseudomonas aeruginosa]. Kamalian MG, Karapetian AV, Nalbandian RM. Biokhimiia; 1987 Apr 23; 52(4):638-42. PubMed ID: 3036256 [Abstract] [Full Text] [Related]
7. Electron transfer between azurin from Alcaligenes faecalis and cytochrome c551 from Pseudomonas aeruginosa. Rosen P, Segal M, Pecht I. Eur J Biochem; 1981 Nov 23; 120(2):339-44. PubMed ID: 6274637 [Abstract] [Full Text] [Related]
8. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins. Farver O, Skov LK, van de Kamp M, Canters GW, Pecht I. Eur J Biochem; 1992 Dec 01; 210(2):399-403. PubMed ID: 1459124 [Abstract] [Full Text] [Related]
9. Electrostatic effects on the kinetics of photoinduced electron-transfer reactions of the triplet state of zinc cytochrome c with wild-type and mutant forms of Pseudomonas aeruginosa azurin. Sokerina EV, Ullmann GM, van Pouderoyen G, Canters GW, Kostić NM. J Biol Inorg Chem; 1999 Feb 01; 4(1):111-21. PubMed ID: 10499108 [Abstract] [Full Text] [Related]
11. The introduction of a negative charge into the hydrophobic patch of Pseudomonas aeruginosa azurin affects the electron self-exchange rate and the electrochemistry. Van Pouderoyen G, Mazumdar S, Hunt NI, Hill AO, Canters GW. Eur J Biochem; 1994 Jun 01; 222(2):583-8. PubMed ID: 8020495 [Abstract] [Full Text] [Related]
12. Conformational equilibria accompanying the electron transfer between cytochrome c (P551) and azurin from Pseudomonas aeruginosa. Rosen P, Pecht I. Biochemistry; 1976 Feb 24; 15(4):775-86. PubMed ID: 174718 [Abstract] [Full Text] [Related]
13. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Henry Y, Bessières P. Biochimie; 1984 Apr 24; 66(4):259-89. PubMed ID: 6331530 [Abstract] [Full Text] [Related]
14. Reduction potentials and their pH dependence in site-directed-mutant forms of azurin from Pseudomonas aeruginosa. Pascher T, Karlsson BG, Nordling M, Malmström BG, Vänngård T. Eur J Biochem; 1993 Mar 01; 212(2):289-96. PubMed ID: 8383044 [Abstract] [Full Text] [Related]
15. Need for cytochrome bc1 complex for dissimilatory nitrite reduction of Pseudomonas aeruginosa. Hasegawa N, Arai H, Igarashi Y. Biosci Biotechnol Biochem; 2003 Jan 01; 67(1):121-6. PubMed ID: 12619683 [Abstract] [Full Text] [Related]
16. Resolution of two distinct electron transfer sites on azurin. Farver O, Blatt Y, Pecht I. Biochemistry; 1982 Jul 20; 21(15):3556-61. PubMed ID: 6810925 [Abstract] [Full Text] [Related]
17. pH dependence of the reduction-oxidation reaction of azurin with cytochrome c-551: role of histidine-35 of azurin in electron transfer. Corin AF, Bersohn R, Cole PE. Biochemistry; 1983 Apr 12; 22(8):2032-8. PubMed ID: 6303402 [Abstract] [Full Text] [Related]
18. Cytochrome c-551 and azurin oxidation catalysed by Pseudomonas aeruginosa cytochrome oxidase. A steady-state kinetic study. Tordi MG, Silvestrini MC, Colosimo A, Tuttobello L, Brunori M. Biochem J; 1985 Sep 15; 230(3):797-805. PubMed ID: 2998333 [Abstract] [Full Text] [Related]
19. Interaction of cytochrome c with the blue copper proteins, plastocyanin and azurin. Augustin MA, Chapman SK, Davies DM, Sykes AG, Speck SH, Margoliash E. J Biol Chem; 1983 May 25; 258(10):6405-9. PubMed ID: 6304038 [Abstract] [Full Text] [Related]
20. The alkaline transition of blue copper proteins, Cucumis sativus plastocyanin and Pseudomonas aeruginosa azurin. Sakurai T. FEBS Lett; 2006 Mar 20; 580(7):1729-32. PubMed ID: 16500649 [Abstract] [Full Text] [Related] Page: [Next] [New Search]