These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 9249510
1. Role of cytoskeleton in shear stress-induced endothelial nitric oxide production. Knudsen HL, Frangos JA. Am J Physiol; 1997 Jul; 273(1 Pt 2):H347-55. PubMed ID: 9249510 [Abstract] [Full Text] [Related]
2. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. Morita T, Kurihara H, Maemura K, Yoshizumi M, Yazaki Y. J Clin Invest; 1993 Oct; 92(4):1706-12. PubMed ID: 8408624 [Abstract] [Full Text] [Related]
3. Flow- and bradykinin-induced nitric oxide production by endothelial cells is independent of membrane potential. Gooch KJ, Frangos JA. Am J Physiol; 1996 Feb; 270(2 Pt 1):C546-51. PubMed ID: 8779918 [Abstract] [Full Text] [Related]
4. Regulation of PGE(2) and PGI(2) release from human umbilical vein endothelial cells by actin cytoskeleton. Sawyer SJ, Norvell SM, Ponik SM, Pavalko FM. Am J Physiol Cell Physiol; 2001 Sep; 281(3):C1038-45. PubMed ID: 11502582 [Abstract] [Full Text] [Related]
5. Nitric oxide and cGMP regulate endothelial permeability and F-actin distribution in hydrogen peroxide-treated endothelial cells. Liu SM, Sundqvist T. Exp Cell Res; 1997 Aug 25; 235(1):238-44. PubMed ID: 9281373 [Abstract] [Full Text] [Related]
6. Chemotactic peptide-induced changes of intermediate filament organization in neutrophils during granule secretion: role of cyclic guanosine monophosphate. Pryzwansky KB, Merricks EP. Mol Biol Cell; 1998 Oct 25; 9(10):2933-47. PubMed ID: 9763453 [Abstract] [Full Text] [Related]
7. Laminar flow stimulates ATP- and shear stress-dependent nitric oxide production in cultured bovine endothelial cells. Korenaga R, Ando J, Tsuboi H, Yang W, Sakuma I, Toyo-oka T, Kamiya A. Biochem Biophys Res Commun; 1994 Jan 14; 198(1):213-9. PubMed ID: 7507319 [Abstract] [Full Text] [Related]
8. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Kuchan MJ, Frangos JA. Am J Physiol; 1994 Mar 14; 266(3 Pt 1):C628-36. PubMed ID: 8166225 [Abstract] [Full Text] [Related]
9. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Malek AM, Izumo S. J Cell Sci; 1996 Apr 14; 109 ( Pt 4)():713-26. PubMed ID: 8718663 [Abstract] [Full Text] [Related]
10. Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Chang YS, Yaccino JA, Lakshminarayanan S, Frangos JA, Tarbell JM. Arterioscler Thromb Vasc Biol; 2000 Jan 14; 20(1):35-42. PubMed ID: 10634798 [Abstract] [Full Text] [Related]
11. Induced cytoskeletal changes in bovine pulmonary artery endothelial cells by resveratrol and the accompanying modified responses to arterial shear stress. Bruder JL, Hsieh T, Lerea KM, Olson SC, Wu JM. BMC Cell Biol; 2001 Jan 14; 2():1. PubMed ID: 11178103 [Abstract] [Full Text] [Related]
12. Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. Malek AM, Zhang J, Jiang J, Alper SL, Izumo S. J Mol Cell Cardiol; 1999 Feb 14; 31(2):387-99. PubMed ID: 10093051 [Abstract] [Full Text] [Related]
13. Effect of shear stress on the hydraulic conductivity of cultured bovine retinal microvascular endothelial cell monolayers. Lakshminarayanan S, Gardner TW, Tarbell JM. Curr Eye Res; 2000 Dec 14; 21(6):944-51. PubMed ID: 11262618 [Abstract] [Full Text] [Related]
14. Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling. Ohno M, Gibbons GH, Dzau VJ, Cooke JP. Circulation; 1993 Jul 14; 88(1):193-7. PubMed ID: 8391400 [Abstract] [Full Text] [Related]
15. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Ranjan V, Xiao Z, Diamond SL. Am J Physiol; 1995 Aug 14; 269(2 Pt 2):H550-5. PubMed ID: 7544542 [Abstract] [Full Text] [Related]
16. Endothelium-derived bradykinin: implications for angiotensin-converting enzyme-inhibitor therapy. Busse R, Fleming I, Hecker M. J Cardiovasc Pharmacol; 1993 Aug 14; 22 Suppl 5():S31-6. PubMed ID: 7508049 [Abstract] [Full Text] [Related]
17. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. Laufs U, Endres M, Stagliano N, Amin-Hanjani S, Chui DS, Yang SX, Simoncini T, Yamada M, Rabkin E, Allen PG, Huang PL, Böhm M, Schoen FJ, Moskowitz MA, Liao JK. J Clin Invest; 2000 Jul 14; 106(1):15-24. PubMed ID: 10880044 [Abstract] [Full Text] [Related]
18. Selective stimulation of L-arginine uptake contributes to shear stress-induced formation of nitric oxide. Posch K, Schmidt K, Graier WF. Life Sci; 1999 Jul 14; 64(8):663-70. PubMed ID: 10069529 [Abstract] [Full Text] [Related]
19. Nitric oxide modulates endothelin 1-induced Ca2+ mobilization and cytoskeletal F-actin filaments in human cerebromicrovascular endothelial cells. Chen Y, McCarron RM, Bembry J, Ruetzler C, Azzam N, Lenz FA, Spatz M. J Cereb Blood Flow Metab; 1999 Feb 14; 19(2):133-8. PubMed ID: 10027767 [Abstract] [Full Text] [Related]
20. Penetration and damage of endothelial cells by Candida albicans. Filler SG, Swerdloff JN, Hobbs C, Luckett PM. Infect Immun; 1995 Mar 14; 63(3):976-83. PubMed ID: 7868270 [Abstract] [Full Text] [Related] Page: [Next] [New Search]