These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 9253944

  • 1. Mutual dependence of calcitonin-gene related peptide and acetylcholine release in neuromuscular preparations.
    Kimura I, Okazaki M, Nojima H.
    Eur J Pharmacol; 1997 Jul 09; 330(2-3):123-8. PubMed ID: 9253944
    [Abstract] [Full Text] [Related]

  • 2. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.
    Correia-de-Sá P, Ribeiro JA.
    Br J Pharmacol; 1994 Feb 09; 111(2):582-8. PubMed ID: 8004402
    [Abstract] [Full Text] [Related]

  • 3. Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle.
    Uchida S, Yamamoto H, Iio S, Matsumoto N, Wang XB, Yonehara N, Imai Y, Inoki R, Yoshida H.
    J Neurochem; 1990 Mar 09; 54(3):1000-3. PubMed ID: 2154548
    [Abstract] [Full Text] [Related]

  • 4. A regenerating release of acetylcholine from mouse motor nerve terminals treated with anticholinesterase agents.
    Chang CC, Hong SJ.
    Neurosci Lett; 1986 Aug 29; 69(2):203-7. PubMed ID: 3763048
    [Abstract] [Full Text] [Related]

  • 5. Succinylcholine-induced acceleration and suppression of electrically evoked acetylcholine release from mouse phrenic nerve-hemidiaphragm muscle preparation.
    Kimura I, Okazaki M, Uwano T, Kobayashi S, Kimura M.
    Jpn J Pharmacol; 1991 Nov 29; 57(3):397-403. PubMed ID: 1813665
    [Abstract] [Full Text] [Related]

  • 6. Release of [3H]acetylcholine from a modified rat phrenic nerve-hemidiaphragm preparation.
    Wessler I, Kilbinger H.
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Dec 29; 334(4):357-64. PubMed ID: 2881215
    [Abstract] [Full Text] [Related]

  • 7. Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm.
    Correia-de-Sá P, Timóteo MA, Ribeiro JA.
    J Neurophysiol; 1996 Dec 29; 76(6):3910-9. PubMed ID: 8985888
    [Abstract] [Full Text] [Related]

  • 8. [Dependence of the effects of neostigmine, nivaline and paraoxon on the stimulation frequency].
    Walther H.
    Acta Biol Med Ger; 1969 Dec 29; 22(5):767-78. PubMed ID: 5372104
    [No Abstract] [Full Text] [Related]

  • 9. Release of calcitonin gene-related peptide from nerve terminals in rat skeletal muscle.
    Sakaguchi M, Inaishi Y, Kashihara Y, Kuno M.
    J Physiol; 1991 Mar 29; 434():257-70. PubMed ID: 2023119
    [Abstract] [Full Text] [Related]

  • 10. Streptozocin-diabetes modifies acetylcholine release from mouse phrenic nerve terminal and presynaptic sensitivity to succinylcholine.
    Kimura I, Okazaki M, Kimura M.
    Jpn J Pharmacol; 1993 May 29; 62(1):35-41. PubMed ID: 8341027
    [Abstract] [Full Text] [Related]

  • 11. Phenthonium, a quaternary derivative of (-)-hyoscyamine, enhances the spontaneous release of acetylcholine at rat motor nerve terminals.
    Fann ML, Souccar C, Lapa AJ.
    Br J Pharmacol; 1990 Jul 29; 100(3):441-6. PubMed ID: 2390670
    [Abstract] [Full Text] [Related]

  • 12. Adenosine uptake and deamination regulate tonic A2a receptor facilitation of evoked [3H]acetylcholine release from the rat motor nerve terminals.
    Correia-de-Sá P, Ribeiro JA.
    Neuroscience; 1996 Jul 29; 73(1):85-92. PubMed ID: 8783232
    [Abstract] [Full Text] [Related]

  • 13. Differential release of [3H]acetylcholine from the rat phrenic nerve-hemidiaphragm preparation by electrical nerve stimulation and by high potassium.
    Wessler I, Steinlein O.
    Neuroscience; 1987 Jul 29; 22(1):289-99. PubMed ID: 2442663
    [Abstract] [Full Text] [Related]

  • 14. Ryanodine- and CaMKII-dependent release of endogenous CGRP induces an increase in acetylcholine quantal size in neuromuscular junctions of mice.
    Gaydukov AE, Balezina OP.
    Brain Behav; 2018 Aug 29; 8(8):e01058. PubMed ID: 29978952
    [Abstract] [Full Text] [Related]

  • 15. Effects of calcitonin gene-related peptide on neuromuscular transmission in the isolated rat diaphragm.
    Ohhashi T, Jacobowitz DM.
    Peptides; 1988 Aug 29; 9(3):613-7. PubMed ID: 2843834
    [Abstract] [Full Text] [Related]

  • 16. Modulation of stimulation-evoked release of newly formed acetylcholine from mouse hemidiaphragm preparation.
    Somogyi GT, Vizi ES, Chaudhry IA, Nagashima H, Duncalf D, Foldes FF, Goldiner PL.
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Jul 29; 336(1):11-5. PubMed ID: 2819746
    [Abstract] [Full Text] [Related]

  • 17. In favour of the vesicular hypothesis: neurochemical evidence that vesamicol (AH5183) inhibits stimulation-evoked release of acetylcholine from neuromuscular junction.
    Vizi ES.
    Br J Pharmacol; 1989 Nov 29; 98(3):898-902. PubMed ID: 2590773
    [Abstract] [Full Text] [Related]

  • 18. Facilitation by 3,4-diaminopyridine of regenerative acetylcholine release from mouse motor nerve.
    Hong SJ, Chang CC.
    Br J Pharmacol; 1990 Dec 29; 101(4):793-8. PubMed ID: 1964819
    [Abstract] [Full Text] [Related]

  • 19. Aconitine-induced increase and decrease of acetylcholine release in the mouse phrenic nerve-hemidiaphragm muscle preparation.
    Okazaki M, Kimura I, Kimura M.
    Jpn J Pharmacol; 1994 Dec 29; 66(4):421-6. PubMed ID: 7723217
    [Abstract] [Full Text] [Related]

  • 20. Calcitonin gene-related peptide enhances spontaneous acetylcholine release from the rat motor nerve terminal.
    Jinnai K, Chihara K, Kanda F, Tada K, Fujita T.
    Neurosci Lett; 1989 Aug 14; 103(1):64-8. PubMed ID: 2789351
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.