These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1115 related items for PubMed ID: 9257650
1. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. Tang J, Breaker RR. RNA; 1997 Aug; 3(8):914-25. PubMed ID: 9257650 [Abstract] [Full Text] [Related]
2. In vitro optimization of truncated stem-loop II variants of the hammerhead ribozyme for cleavage in low concentrations of magnesium under non-turnover conditions. Zillmann M, Limauro SE, Goodchild J. RNA; 1997 Jul; 3(7):734-47. PubMed ID: 9214657 [Abstract] [Full Text] [Related]
3. In vitro evolution suggests multiple origins for the hammerhead ribozyme. Salehi-Ashtiani K, Szostak JW. Nature; 2001 Nov 01; 414(6859):82-4. PubMed ID: 11689947 [Abstract] [Full Text] [Related]
4. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes. Wang DY, Lai BH, Sen D. J Mol Biol; 2002 Apr 19; 318(1):33-43. PubMed ID: 12054766 [Abstract] [Full Text] [Related]
6. Isolation of active ribozymes from an RNA pool of random sequences using an anchored substrate RNA. Ishizaka M, Ohshima Y, Tani T. Biochem Biophys Res Commun; 1995 Sep 14; 214(2):403-9. PubMed ID: 7545903 [Abstract] [Full Text] [Related]
9. In vitro evolution of the hammerhead ribozyme to a purine-specific ribozyme using mutagenic PCR with two nucleotide analogues. Kore AR, Vaish NK, Morris JA, Eckstein F. J Mol Biol; 2000 Sep 01; 301(5):1113-21. PubMed ID: 10966809 [Abstract] [Full Text] [Related]
10. Catalytic strategies of self-cleaving ribozymes. Cochrane JC, Strobel SA. Acc Chem Res; 2008 Aug 01; 41(8):1027-35. PubMed ID: 18652494 [Abstract] [Full Text] [Related]
11. A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate. Simorre JP, Legault P, Hangar AB, Michiels P, Pardi A. Biochemistry; 1997 Jan 21; 36(3):518-25. PubMed ID: 9012667 [Abstract] [Full Text] [Related]
13. Reversible photo-regulation of a hammerhead ribozyme using a diffusible effector. Lee HW, Robinson SG, Bandyopadhyay S, Mitchell RH, Sen D. J Mol Biol; 2007 Aug 31; 371(5):1163-73. PubMed ID: 17619022 [Abstract] [Full Text] [Related]
14. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Robertson MP, Ellington AD. Nat Biotechnol; 1999 Jan 31; 17(1):62-6. PubMed ID: 9920271 [Abstract] [Full Text] [Related]
15. Identification of functional domains in the self-cleaving Neurospora VS ribozyme using damage selection. Beattie TL, Collins RA. J Mol Biol; 1997 Apr 11; 267(4):830-40. PubMed ID: 9135115 [Abstract] [Full Text] [Related]
16. HIV-1 TAR as anchoring site for optimized catalytic RNAs. Puerta-Fernandez E, Barroso-del Jesus A, Romero-López C, Berzal-Herranz A. Biol Chem; 2003 Mar 11; 384(3):343-50. PubMed ID: 12715885 [Abstract] [Full Text] [Related]
18. Engineered RNase P ribozymes inhibit gene expression and growth of cytomegalovirus by increasing rate of cleavage and substrate binding. Trang P, Hsu A, Zhou T, Lee J, Kilani AF, Nepomuceno E, Liu F. J Mol Biol; 2002 Jan 25; 315(4):573-86. PubMed ID: 11812131 [Abstract] [Full Text] [Related]
20. In vitro selection of allosteric ribozymes: theory and experimental validation. Piganeau N, Thuillier V, Famulok M. J Mol Biol; 2001 Oct 05; 312(5):1177-90. PubMed ID: 11580234 [Abstract] [Full Text] [Related] Page: [Next] [New Search]