These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 9261510
1. Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization. Bigoni F, Stanyon R, Koehler U, Morescalchi AM, Wienberg J. Am J Primatol; 1997; 42(4):289-98. PubMed ID: 9261510 [Abstract] [Full Text] [Related]
2. Fluorescene in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Bigoni F, Koehler U, Stanyon R, Ishida T, Wienberg J. Am J Phys Anthropol; 1997 Mar; 102(3):315-27. PubMed ID: 9098501 [Abstract] [Full Text] [Related]
3. Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian Colobines. Bigoni F, Stanyon R, Wimmer R, Schempp W. Am J Primatol; 2003 Jul; 60(3):85-93. PubMed ID: 12874840 [Abstract] [Full Text] [Related]
4. In situ hybridization (FISH) maps chromosomal homologies between Alouatta belzebul (Platyrrhini, Cebidae) and other primates and reveals extensive interchromosomal rearrangements between howler monkey genomes. Consigliere S, Stanyon R, Koehler U, Arnold N, Wienberg J. Am J Primatol; 1998 Jul; 46(2):119-33. PubMed ID: 9773675 [Abstract] [Full Text] [Related]
5. Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey. Stanyon R, Consigliere S, Müller S, Morescalchi A, Neusser M, Wienberg J. Am J Primatol; 2000 Feb; 50(2):95-107. PubMed ID: 10676707 [Abstract] [Full Text] [Related]
6. Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization. Koehler U, Arnold N, Wienberg J, Tofanelli S, Stanyon R. Am J Phys Anthropol; 1995 May; 97(1):37-47. PubMed ID: 7645672 [Abstract] [Full Text] [Related]
7. Mitochondrial relationships and divergence dates of the African colobines: evidence of Miocene origins for the living colobus monkeys. Ting N. J Hum Evol; 2008 Aug; 55(2):312-25. PubMed ID: 18423802 [Abstract] [Full Text] [Related]
8. Dental eruption sequence among colobine primates. Harvati K. Am J Phys Anthropol; 2000 May; 112(1):69-85. PubMed ID: 10766945 [Abstract] [Full Text] [Related]
9. Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization. Dumas F, Bigoni F, Stone G, Sineo L, Stanyon R. Chromosome Res; 2005 May; 13(1):85-96. PubMed ID: 15791414 [Abstract] [Full Text] [Related]
10. Chromosomal painting shows that "marked chromosomes" in lesser apes and Old World monkeys are not homologous and evolved by convergence. Stanyon R, Arnold N, Koehler U, Bigoni F, Wienberg J. Cytogenet Cell Genet; 1995 May; 68(1-2):74-8. PubMed ID: 7956365 [Abstract] [Full Text] [Related]
11. Studies on karyotype evolution in higher primates in relation to human chromosome 14 and 9 by comparative mapping of immunoglobulin C epsilon genes with fluorescence in situ hybridization. Tanabe H. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 1999 May; (117):77-90. PubMed ID: 10859938 [Abstract] [Full Text] [Related]
12. [Chromosome homologies between human and Francois' monkey (Semnopithecus francoisi) established by chromosome painting]. Nai WH, Liu RQ, Chen YZ, Wang JH. Yi Chuan Xue Bao; 1999 May; 26(5):474-9. PubMed ID: 10665223 [Abstract] [Full Text] [Related]
13. Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints. Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F. Cytogenet Genome Res; 2008 May; 122(2):132-8. PubMed ID: 19096208 [Abstract] [Full Text] [Related]
14. A brief history of human autosomes. Haig D. Philos Trans R Soc Lond B Biol Sci; 1999 Aug 29; 354(1388):1447-70. PubMed ID: 10515002 [Abstract] [Full Text] [Related]
15. Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J. Genomics; 1997 Feb 01; 39(3):396-401. PubMed ID: 9119378 [Abstract] [Full Text] [Related]
16. Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Frönicke L, Wienberg J. Mamm Genome; 2001 Jun 01; 12(6):442-9. PubMed ID: 11353391 [Abstract] [Full Text] [Related]
18. [Comparison of the common fragile sites and G-banding patterns of chromosomes among rhesus monkeys, white-eyebrow gibbons and human being]. Wang Y, Shi LM. Yi Chuan Xue Bao; 1989 Jun 01; 16(3):188-96. PubMed ID: 2629913 [Abstract] [Full Text] [Related]
20. Mapping chromosomal homologies between humans and two langurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Nie W, Liu R, Chen Y, Wang J, Yang F. Chromosome Res; 1998 Sep 01; 6(6):447-53. PubMed ID: 9865783 [Abstract] [Full Text] [Related] Page: [Next] [New Search]