These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1329 related items for PubMed ID: 9261986
1. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function. Stanton BA. Wien Klin Wochenschr; 1997 Jun 27; 109(12-13):457-64. PubMed ID: 9261986 [Abstract] [Full Text] [Related]
2. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances. Reddy MM, Quinton PM. JOP; 2001 Jul 27; 2(4 Suppl):212-8. PubMed ID: 11875262 [Abstract] [Full Text] [Related]
3. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Dalemans W, Barbry P, Champigny G, Jallat S, Dott K, Dreyer D, Crystal RG, Pavirani A, Lecocq JP, Lazdunski M. Nature; 2001 Jul 27; 354(6354):526-8. PubMed ID: 1722027 [Abstract] [Full Text] [Related]
4. The cystic fibrosis transmembrane regulator (CFTR) in the kidney. Morales MM, Falkenstein D, Lopes AG. An Acad Bras Cienc; 2000 Sep 27; 72(3):399-406. PubMed ID: 11028104 [Abstract] [Full Text] [Related]
5. Vasopressin-stimulated CFTR Cl- currents are increased in the renal collecting duct cells of a mouse model of Liddle's syndrome. Chang CT, Bens M, Hummler E, Boulkroun S, Schild L, Teulon J, Rossier BC, Vandewalle A. J Physiol; 2005 Jan 01; 562(Pt 1):271-84. PubMed ID: 15513933 [Abstract] [Full Text] [Related]
6. Expression of delta F508 cystic fibrosis transmembrane conductance regulator protein and related chloride transport properties in the gallbladder epithelium from cystic fibrosis patients. Dray-Charier N, Paul A, Scoazec JY, Veissière D, Mergey M, Capeau J, Soubrane O, Housset C. Hepatology; 1999 Jun 01; 29(6):1624-34. PubMed ID: 10347100 [Abstract] [Full Text] [Related]
7. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications. Vandewalle A. Chang Gung Med J; 2007 Jun 01; 30(1):17-25. PubMed ID: 17477025 [Abstract] [Full Text] [Related]
8. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. French PJ, van Doorninck JH, Peters RH, Verbeek E, Ameen NA, Marino CR, de Jonge HR, Bijman J, Scholte BJ. J Clin Invest; 1996 Sep 15; 98(6):1304-12. PubMed ID: 8823295 [Abstract] [Full Text] [Related]
9. Cl- absorption across the thick ascending limb is not altered in cystic fibrosis mice. A role for a pseudo-CFTR Cl- channel. Marvão P, De Jesus Ferreira MC, Bailly C, Paulais M, Bens M, Guinamard R, Moreau R, Vandewalle A, Teulon J. J Clin Invest; 1998 Dec 01; 102(11):1986-93. PubMed ID: 9835624 [Abstract] [Full Text] [Related]
10. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Nature; 1992 Aug 27; 358(6389):761-4. PubMed ID: 1380673 [Abstract] [Full Text] [Related]
11. Functional interaction of CFTR and ENaC in sweat glands. Reddy MM, Quinton PM. Pflugers Arch; 2003 Jan 27; 445(4):499-503. PubMed ID: 12548396 [Abstract] [Full Text] [Related]
12. Generation and characterization of a delta F508 cystic fibrosis mouse model. Colledge WH, Abella BS, Southern KW, Ratcliff R, Jiang C, Cheng SH, MacVinish LJ, Anderson JR, Cuthbert AW, Evans MJ. Nat Genet; 1995 Aug 27; 10(4):445-52. PubMed ID: 7545494 [Abstract] [Full Text] [Related]
13. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Li C, Naren AP. Pharmacol Ther; 2005 Nov 27; 108(2):208-23. PubMed ID: 15936089 [Abstract] [Full Text] [Related]
14. CFTR-like chloride channels in non-ciliated bronchiolar epithelial (Clara) cells. Chinet TC, Gabriel SE, Penland CM, Sato M, Stutts MJ, Boucher RC, Van Scott MR. Biochem Biophys Res Commun; 1997 Jan 13; 230(2):470-5. PubMed ID: 9016805 [Abstract] [Full Text] [Related]
15. Relationships between cystic fibrosis transmembrane conductance regulator, extracellular nucleotides and cystic fibrosis. Marcet B, Boeynaems JM. Pharmacol Ther; 2006 Dec 13; 112(3):719-32. PubMed ID: 16828872 [Abstract] [Full Text] [Related]
16. CFTR gene transfer to human cystic fibrosis pancreatic duct cells using a Sendai virus vector. Rakonczay Z, Hegyi P, Hasegawa M, Inoue M, You J, Iida A, Ignáth I, Alton EW, Griesenbach U, Ovári G, Vág J, Da Paula AC, Crawford RM, Varga G, Amaral MD, Mehta A, Lonovics J, Argent BE, Gray MA. J Cell Physiol; 2008 Feb 13; 214(2):442-55. PubMed ID: 17654517 [Abstract] [Full Text] [Related]
17. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid. Scott-Ward TS, Li H, Schmidt A, Cai Z, Sheppard DN. Mol Membr Biol; 2004 Feb 13; 21(1):27-38. PubMed ID: 14668136 [Abstract] [Full Text] [Related]
18. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells. Noël S, Wilke M, Bot AG, De Jonge HR, Becq F. J Pharmacol Exp Ther; 2008 Jun 13; 325(3):1016-23. PubMed ID: 18309088 [Abstract] [Full Text] [Related]
19. Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conductance regulator impede processing or opening of the channel. Seibert FS, Jia Y, Mathews CJ, Hanrahan JW, Riordan JR, Loo TW, Clarke DM. Biochemistry; 1997 Sep 30; 36(39):11966-74. PubMed ID: 9305991 [Abstract] [Full Text] [Related]