These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 9263033

  • 1. Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds.
    Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I.
    Int J Dev Neurosci; 1997 Jul; 15(4-5):563-76. PubMed ID: 9263033
    [Abstract] [Full Text] [Related]

  • 2. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes.
    Farbman AI, Guagliardo N, Sollars SI, Hill DL.
    J Neurosci Res; 2004 Dec 01; 78(5):659-67. PubMed ID: 15495212
    [Abstract] [Full Text] [Related]

  • 3. Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development.
    Uchida N, Kanazawa M, Suzuki Y, Takeda M.
    Arch Histol Cytol; 2003 Mar 01; 66(1):17-25. PubMed ID: 12703550
    [Abstract] [Full Text] [Related]

  • 4. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling.
    Whitehead MC, Ganchrow JR, Ganchrow D, Yao B.
    Neuroscience; 1999 Mar 01; 93(3):931-41. PubMed ID: 10473258
    [Abstract] [Full Text] [Related]

  • 5. Alterations in size, number, and morphology of gustatory papillae and taste buds in BDNF null mutant mice demonstrate neural dependence of developing taste organs.
    Mistretta CM, Goosens KA, Farinas I, Reichardt LF.
    J Comp Neurol; 1999 Jun 21; 409(1):13-24. PubMed ID: 10363708
    [Abstract] [Full Text] [Related]

  • 6. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):25-39. PubMed ID: 12454994
    [Abstract] [Full Text] [Related]

  • 7. Development of fungiform papillae, taste buds, and their innervation in the hamster.
    Whitehead MC, Kachele DL.
    J Comp Neurol; 1994 Feb 22; 340(4):515-30. PubMed ID: 8006215
    [Abstract] [Full Text] [Related]

  • 8. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF, Miller KK, Kitzman PH, Davis BM, Albers KM.
    Dev Biol; 2001 Apr 15; 232(2):508-21. PubMed ID: 11401409
    [Abstract] [Full Text] [Related]

  • 9. Lingual deficits in neurotrophin double knockout mice.
    Nosrat IV, Agerman K, Marinescu A, Ernfors P, Nosrat CA.
    J Neurocytol; 2004 Dec 15; 33(6):607-15. PubMed ID: 16217617
    [Abstract] [Full Text] [Related]

  • 10. The neurotrophin receptor p75 regulates gustatory axon branching and promotes innervation of the tongue during development.
    Fei D, Huang T, Krimm RF.
    Neural Dev; 2014 Jun 24; 9():15. PubMed ID: 24961238
    [Abstract] [Full Text] [Related]

  • 11. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster.
    Ganchrow D, Ganchrow JR, Verdin-Alcazar M, Whitehead MC.
    J Comp Neurol; 2003 Jan 01; 455(1):11-24. PubMed ID: 12454993
    [Abstract] [Full Text] [Related]

  • 12. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood.
    Krimm RF.
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Dec 01; 288(12):1294-302. PubMed ID: 17083122
    [Abstract] [Full Text] [Related]

  • 13. Gustatory papillae and taste bud development and maintenance in the absence of TrkB ligands BDNF and NT-4.
    Ito A, Nosrat CA.
    Cell Tissue Res; 2009 Sep 01; 337(3):349-59. PubMed ID: 19629530
    [Abstract] [Full Text] [Related]

  • 14. The transcription factor Phox2b distinguishes between oral and non-oral sensory neurons in the geniculate ganglion.
    Ohman-Gault L, Huang T, Krimm R.
    J Comp Neurol; 2017 Dec 15; 525(18):3935-3950. PubMed ID: 28856690
    [Abstract] [Full Text] [Related]

  • 15. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN, Krimm RF, Whitehead MC.
    J Neurosci; 2007 Dec 12; 27(50):13875-81. PubMed ID: 18077699
    [Abstract] [Full Text] [Related]

  • 16. Regeneration of fungiform taste buds: temporal and spatial characteristics.
    Cheal M, Oakley B.
    J Comp Neurol; 1977 Apr 15; 172(4):609-26. PubMed ID: 838892
    [Abstract] [Full Text] [Related]

  • 17. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures.
    Nosrat CA, MacCallum DK, Mistretta CM.
    Cell Tissue Res; 2001 Jan 15; 303(1):35-45. PubMed ID: 11236003
    [Abstract] [Full Text] [Related]

  • 18. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation.
    Liebl DJ, Mbiene JP, Parada LF.
    Dev Biol; 1999 Sep 15; 213(2):378-89. PubMed ID: 10479455
    [Abstract] [Full Text] [Related]

  • 19. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.
    Guagliardo NA, Hill DL.
    J Comp Neurol; 2007 Sep 10; 504(2):206-16. PubMed ID: 17626272
    [Abstract] [Full Text] [Related]

  • 20. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP, Mistretta CM.
    Acta Anat (Basel); 1997 Sep 10; 160(3):139-58. PubMed ID: 9718388
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.