These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Mycobacterium leprae genome: systematic sequence analysis identifies key catabolic enzymes, ATP-dependent transport systems and a novel polA locus associated with genomic variability. Fsihi H, Cole ST. Mol Microbiol; 1995 Jun; 16(5):909-19. PubMed ID: 7476188 [Abstract] [Full Text] [Related]
3. Gene arrangement and organization in a approximately 76 kb fragment encompassing the oriC region of the chromosome of Mycobacterium leprae. Fsihi H, De Rossi E, Salazar L, Cantoni R, Labò M, Riccardi G, Takiff HE, Eiglmeier K, Bergh S, Cole ST. Microbiology (Reading); 1996 Nov; 142 ( Pt 11)():3147-61. PubMed ID: 8969512 [Abstract] [Full Text] [Related]
4. The mammalian cell entry operon 1 (mce1) of mycobacterium leprae and mycobacterium tuberculosis. Wiker HG, Spierings E, Kolkman MA, Ottenhoff TH, Harboe M. Microb Pathog; 1999 Sep; 27(3):173-7. PubMed ID: 10455007 [Abstract] [Full Text] [Related]
8. Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif-Str regions. Honoré N, Bergh S, Chanteau S, Doucet-Populaire F, Eiglmeier K, Garnier T, Georges C, Launois P, Limpaiboon T, Newton S. Mol Microbiol; 1993 Jan; 7(2):207-14. PubMed ID: 8446028 [Abstract] [Full Text] [Related]
10. Genomic arrangement of a putative operon involved in maltose transport in the Mycobacterium tuberculosis complex and Mycobacterium leprae. Borich SM, Murray A, Gormley E. Microbios; 2000 Jan; 102(401):7-15. PubMed ID: 10817516 [Abstract] [Full Text] [Related]
12. Genetic relationships among Mycobacterium leprae, Mycobacterium tuberculosis, and candidate leprosy vaccine strains determined by DNA hybridization: identification of an M. leprae-specific repetitive sequence. Grosskinsky CM, Jacobs WR, Clark-Curtiss JE, Bloom BR. Infect Immun; 1989 May; 57(5):1535-41. PubMed ID: 2565292 [Abstract] [Full Text] [Related]
13. Mycobacterium leprae RecA is structurally analogous but functionally distinct from Mycobacterium tuberculosis RecA protein. Patil KN, Singh P, Harsha S, Muniyappa K. Biochim Biophys Acta; 2011 Dec; 1814(12):1802-11. PubMed ID: 22001565 [Abstract] [Full Text] [Related]
14. Extensive sequence homology between the mycobacterium leprae LSR (12 kDa) antigen and its Mycobacterium tuberculosis counterpart. Oftung F, Mustafa AS, Wiker HG. FEMS Immunol Med Microbiol; 2000 Jan; 27(1):87-9. PubMed ID: 10617795 [Abstract] [Full Text] [Related]
17. Implications of high level pseudogene transcription in Mycobacterium leprae. Williams DL, Slayden RA, Amin A, Martinez AN, Pittman TL, Mira A, Mitra A, Nagaraja V, Morrison NE, Moraes M, Gillis TP. BMC Genomics; 2009 Aug 25; 10():397. PubMed ID: 19706172 [Abstract] [Full Text] [Related]
19. Validating divergent ORF annotation of the Mycobacterium leprae genome through a full translation data set and peptide identification by tandem mass spectrometry. de Souza GA, Søfteland T, Koehler CJ, Thiede B, Wiker HG. Proteomics; 2009 Jun 25; 9(12):3233-43. PubMed ID: 19562797 [Abstract] [Full Text] [Related]
20. Biological implications of Mycobacterium leprae gene expression during infection. Williams DL, Torrero M, Wheeler PR, Truman RW, Yoder M, Morrison N, Bishai WR, Gillis TP. J Mol Microbiol Biotechnol; 2004 Jun 25; 8(1):58-72. PubMed ID: 15741741 [Abstract] [Full Text] [Related] Page: [Next] [New Search]