These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
135 related items for PubMed ID: 9277403
1. Expression cloning of NaDC-2, an intestinal Na(+)- or Li(+)-dependent dicarboxylate transporter. Bai L, Pajor AM. Am J Physiol; 1997 Aug; 273(2 Pt 1):G267-74. PubMed ID: 9277403 [Abstract] [Full Text] [Related]
2. Molecular cloning and functional expression of a sodium-dicarboxylate cotransporter from human kidney. Pajor AM. Am J Physiol; 1996 Apr; 270(4 Pt 2):F642-8. PubMed ID: 8967342 [Abstract] [Full Text] [Related]
3. Functional differences between rabbit and human Na(+)-dicarboxylate cotransporters, NaDC-1 and hNaDC-1. Pajor AM, Sun N. Am J Physiol; 1996 Nov; 271(5 Pt 2):F1093-9. PubMed ID: 8946005 [Abstract] [Full Text] [Related]
4. Molecular cloning, chromosomal organization, and functional characterization of a sodium-dicarboxylate cotransporter from mouse kidney. Pajor AM, Sun NN. Am J Physiol Renal Physiol; 2000 Sep; 279(3):F482-90. PubMed ID: 10966927 [Abstract] [Full Text] [Related]
5. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. Pajor AM. J Biol Chem; 1995 Mar 17; 270(11):5779-85. PubMed ID: 7890707 [Abstract] [Full Text] [Related]
6. Expression of the renal Na+/dicarboxylate cotransporter, NaDC-1, in COS-7 cells. Pajor AM, Valmonte HG. Pflugers Arch; 1996 Feb 17; 431(4):645-51. PubMed ID: 8596711 [Abstract] [Full Text] [Related]
14. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Griffith DA, Pajor AM. Biochemistry; 1999 Jun 08; 38(23):7524-31. PubMed ID: 10360950 [Abstract] [Full Text] [Related]
15. Cloning, functional characterization, and localization of a rat renal Na+-dicarboxylate transporter. Sekine T, Cha SH, Hosoyamada M, Kanai Y, Watanabe N, Furuta Y, Fukuda K, Igarashi T, Endou H. Am J Physiol; 1998 Aug 08; 275(2):F298-305. PubMed ID: 9691021 [Abstract] [Full Text] [Related]
16. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, Prasad PD, Ganapathy V. Am J Physiol Cell Physiol; 2000 May 08; 278(5):C1019-30. PubMed ID: 10794676 [Abstract] [Full Text] [Related]
17. Mutational analysis of histidine residues in the rabbit Na+/dicarboxylate co-transporter NaDC-1. Pajor AM, Sun N, Valmonte HG. Biochem J; 1998 Apr 01; 331 ( Pt 1)(Pt 1):257-64. PubMed ID: 9512488 [Abstract] [Full Text] [Related]
19. The substrate recognition domain in the Na+/dicarboxylate and Na+/sulfate cotransporters is located in the carboxy-terminal portion of the protein. Pajor AM, Sun N, Bai L, Markovich D, Sule P. Biochim Biophys Acta; 1998 Mar 06; 1370(1):98-106. PubMed ID: 9518567 [Abstract] [Full Text] [Related]