These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 9277553

  • 1. Natural osmolyte trimethylamine N-oxide stimulates tubulin polymerization and reverses urea inhibition.
    Sackett DL.
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R669-76. PubMed ID: 9277553
    [Abstract] [Full Text] [Related]

  • 2. Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules.
    Tseng HC, Graves DJ.
    Biochem Biophys Res Commun; 1998 Sep 29; 250(3):726-30. PubMed ID: 9784413
    [Abstract] [Full Text] [Related]

  • 3. A natural osmolyte trimethylamine N-oxide promotes assembly and bundling of the bacterial cell division protein, FtsZ and counteracts the denaturing effects of urea.
    Mukherjee A, Santra MK, Beuria TK, Panda D.
    FEBS J; 2005 Jun 29; 272(11):2760-72. PubMed ID: 15943810
    [Abstract] [Full Text] [Related]

  • 4. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy.
    Simon JR, Salmon ED.
    J Cell Sci; 1990 Aug 29; 96 ( Pt 4)():571-82. PubMed ID: 2283357
    [Abstract] [Full Text] [Related]

  • 5. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein.
    Lin TY, Timasheff SN.
    Biochemistry; 1994 Oct 25; 33(42):12695-701. PubMed ID: 7918496
    [Abstract] [Full Text] [Related]

  • 6. Do Australian desert frogs co-accumulate counteracting solutes with urea during aestivation?
    Withers PC, Guppy M.
    J Exp Biol; 1996 Aug 25; 199(Pt 8):1809-16. PubMed ID: 8708581
    [Abstract] [Full Text] [Related]

  • 7. Osmolyte counteracts urea-induced denaturation of alpha-chymotrypsin.
    Venkatesu P, Lee MJ, Lin HM.
    J Phys Chem B; 2009 Apr 16; 113(15):5327-38. PubMed ID: 19354310
    [Abstract] [Full Text] [Related]

  • 8. Estradiol and testosterone have opposite effects on microtubule polymerization.
    Kipp JL, Ramirez VD.
    Neuroendocrinology; 2003 Apr 16; 77(4):258-72. PubMed ID: 12766326
    [Abstract] [Full Text] [Related]

  • 9. Interactions of 2-methoxyestradiol, an endogenous mammalian metabolite, with unpolymerized tubulin and with tubulin polymers.
    Hamel E, Lin CM, Flynn E, D'Amato RJ.
    Biochemistry; 1996 Jan 30; 35(4):1304-10. PubMed ID: 8573587
    [Abstract] [Full Text] [Related]

  • 10. Modulation of the Polymerization Kinetics of α/β-Tubulin by Osmolytes and Macromolecular Crowding.
    Schummel PH, Gao M, Winter R.
    Chemphyschem; 2017 Jan 18; 18(2):189-197. PubMed ID: 27813294
    [Abstract] [Full Text] [Related]

  • 11. Inhibition of Microtubule Depolymerization by Osmolytes.
    Bachand GD, Jain R, Ko R, Bouxsein NF, VanDelinder V.
    Biomacromolecules; 2018 Jul 09; 19(7):2401-2408. PubMed ID: 29689154
    [Abstract] [Full Text] [Related]

  • 12. A comparison of the counteracting effects of glycine betaine and TMAO on the activity of RNase A in aqueous urea solution.
    Samuelsson LM, Bedford JJ, Smith RA, Leader JP.
    Comp Biochem Physiol A Mol Integr Physiol; 2005 May 09; 141(1):22-8. PubMed ID: 15886035
    [Abstract] [Full Text] [Related]

  • 13. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin.
    Hugdahl JD, Bokros CL, Hanesworth VR, Aalund GR, Morejohn LC.
    Plant Cell; 1993 Sep 09; 5(9):1063-80. PubMed ID: 8104575
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Differences in the effect of Ca2+ on isolated microtubules from cod and cow brain.
    Strömberg E, Wallin M.
    Cell Motil Cytoskeleton; 1994 Sep 09; 28(1):59-68. PubMed ID: 8044850
    [Abstract] [Full Text] [Related]

  • 18. Exploring the influence of natural cosolvents on the free energy and conformational landscape of filamentous actin and microtubules.
    Schummel PH, Jaworek MW, Rosin C, Högg J, Winter R.
    Phys Chem Chem Phys; 2018 Nov 21; 20(45):28400-28411. PubMed ID: 30238109
    [Abstract] [Full Text] [Related]

  • 19. Characterization of the reversible taxol-induced polymerization of plant tubulin into microtubules.
    Bokros CL, Hugdahl JD, Hanesworth VR, Murthy JV, Morejohn LC.
    Biochemistry; 1993 Apr 06; 32(13):3437-47. PubMed ID: 8096395
    [Abstract] [Full Text] [Related]

  • 20. Temperature sensitivity of vinblastine-induced tubulin polymerization in the presence of microtubule-associated proteins.
    Prasad V, Jordan MA, Ludueña RF.
    J Protein Chem; 1992 Oct 06; 11(5):509-15. PubMed ID: 1449600
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.