These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
392 related items for PubMed ID: 9278704
1. Frequency tuning of mechanical responses in the mammalian cochlea. Robles L, Alcayaga C. Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704 [Abstract] [Full Text] [Related]
2. Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. Brundin L, Flock A, Canlon B. Nature; 1989 Dec 14; 342(6251):814-6. PubMed ID: 2601740 [Abstract] [Full Text] [Related]
3. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Cooper NP, Vavakou A, van der Heijden M. Nat Commun; 2018 Aug 03; 9(1):3054. PubMed ID: 30076297 [Abstract] [Full Text] [Related]
4. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane. Nilsen KE, Russell IJ. Nat Neurosci; 1999 Jul 03; 2(7):642-8. PubMed ID: 10404197 [Abstract] [Full Text] [Related]
5. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla. Xia A, Liu X, Raphael PD, Applegate BE, Oghalai JS. Nat Commun; 2016 Oct 31; 7():13133. PubMed ID: 27796310 [Abstract] [Full Text] [Related]
6. The interplay between active hair bundle motility and electromotility in the cochlea. O Maoiléidigh D, Jülicher F. J Acoust Soc Am; 2010 Sep 31; 128(3):1175-90. PubMed ID: 20815454 [Abstract] [Full Text] [Related]
7. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain. Abel C, Kössl M. J Neurophysiol; 2009 Mar 31; 101(3):1560-74. PubMed ID: 19036870 [Abstract] [Full Text] [Related]
8. Tuning the cochlea: wave-mediated positive feedback between cells. Bell A. Biol Cybern; 2007 Apr 31; 96(4):421-38. PubMed ID: 17216524 [Abstract] [Full Text] [Related]
10. A simple model of cochlear micromechanics in the mammal and lizard. Turner RG, Nielsen DW. Audiology; 1983 Apr 31; 22(6):545-59. PubMed ID: 6667175 [Abstract] [Full Text] [Related]
12. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. Ruggero MA, Rich NC. J Neurosci; 1991 Apr 31; 11(4):1057-67. PubMed ID: 2010805 [Abstract] [Full Text] [Related]
13. The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing. Altoè A, Shera CA. Sci Rep; 2020 Nov 25; 10(1):20528. PubMed ID: 33239701 [Abstract] [Full Text] [Related]
14. Some current concepts of cochlear mechanics. Zwislocki JJ. Audiology; 1983 Nov 25; 22(6):517-29. PubMed ID: 6667173 [Abstract] [Full Text] [Related]
16. Mechanical filtering of sound in the inner ear. Brown AM, Gaskill SA, Williams DM. Proc Biol Sci; 1992 Oct 22; 250(1327):29-34. PubMed ID: 1361059 [Abstract] [Full Text] [Related]
18. An outer hair cell-powered global hydromechanical mechanism for cochlear amplification. He W, Burwood G, Fridberger A, Nuttall AL, Ren T. Hear Res; 2022 Sep 15; 423():108407. PubMed ID: 34922772 [Abstract] [Full Text] [Related]
19. Direct visualization of organ of corti kinematics in a hemicochlea. Hu X, Evans BN, Dallos P. J Neurophysiol; 1999 Nov 15; 82(5):2798-807. PubMed ID: 10561446 [Abstract] [Full Text] [Related]
20. The response of the apical turn of cochlea modeled with a tuned amplifier with negative feedback. Khanna SM. Hear Res; 2004 Aug 15; 194(1-2):97-108. PubMed ID: 15276681 [Abstract] [Full Text] [Related] Page: [Next] [New Search]