These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 9278722
1. A theory of metabolic costs for bipedal gaits. Minetti AE, Alexander RM. J Theor Biol; 1997 Jun 21; 186(4):467-76. PubMed ID: 9278722 [Abstract] [Full Text] [Related]
2. A model of bipedal locomotion on compliant legs. Alexander RM. Philos Trans R Soc Lond B Biol Sci; 1992 Oct 29; 338(1284):189-98. PubMed ID: 1360684 [Abstract] [Full Text] [Related]
3. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods. Reilly SM, McElroy EJ, Biknevicius AR. Zoology (Jena); 2007 Oct 29; 110(4):271-89. PubMed ID: 17482802 [Abstract] [Full Text] [Related]
4. Energetics of running: a new perspective. Kram R, Taylor CR. Nature; 1990 Jul 19; 346(6281):265-7. PubMed ID: 2374590 [Abstract] [Full Text] [Related]
5. Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits. Vereecke EE, D'Août K, Aerts P. J Hum Evol; 2006 May 19; 50(5):552-67. PubMed ID: 16516949 [Abstract] [Full Text] [Related]
6. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA. J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):899-911. PubMed ID: 17029267 [Abstract] [Full Text] [Related]
7. A biomechanical model for size, speed and anatomical variations of the energetic costs of running mammals. Blanco RE, Gambini R. J Theor Biol; 2006 Jul 07; 241(1):49-61. PubMed ID: 16352314 [Abstract] [Full Text] [Related]
8. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F, Minetti AE. Eur J Appl Physiol; 2003 Jan 07; 88(4-5):297-316. PubMed ID: 12527959 [Abstract] [Full Text] [Related]
9. Mechanical models for insect locomotion: active muscles and energy losses. Schmitt J, Holmes P. Biol Cybern; 2003 Jul 07; 89(1):43-55. PubMed ID: 12836032 [Abstract] [Full Text] [Related]
10. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. Rubenson J, Heliams DB, Maloney SK, Withers PC, Lloyd DG, Fournier PA. J Exp Biol; 2007 Oct 07; 210(Pt 20):3513-24. PubMed ID: 17921153 [Abstract] [Full Text] [Related]
11. Constrained optimization in human running. Gutmann AK, Jacobi B, Butcher MT, Bertram JE. J Exp Biol; 2006 Feb 07; 209(Pt 4):622-32. PubMed ID: 16449557 [Abstract] [Full Text] [Related]
12. Preferred and energetically optimal gait transition speeds in human locomotion. Hreljac A. Med Sci Sports Exerc; 1993 Oct 07; 25(10):1158-62. PubMed ID: 8231761 [Abstract] [Full Text] [Related]
13. Optimal speeds for walking and running, and walking on a moving walkway. Srinivasan M. Chaos; 2009 Jun 07; 19(2):026112. PubMed ID: 19566272 [Abstract] [Full Text] [Related]
14. What are the relations between mechanics, gait parameters, and energetics in terrestrial locomotion? Hoyt DF, Wickler SJ, Dutto DJ, Catterfeld GE, Johnsen D. J Exp Zool A Comp Exp Biol; 2006 Nov 01; 305(11):912-22. PubMed ID: 17029281 [Abstract] [Full Text] [Related]
15. The metabolic cost of walking on gradients with a waddling gait. Nudds RL, Codd JR. J Exp Biol; 2012 Aug 01; 215(Pt 15):2579-85. PubMed ID: 22786634 [Abstract] [Full Text] [Related]
16. An analytical estimation of the energy cost for legged locomotion. Nishii J. J Theor Biol; 2006 Feb 07; 238(3):636-45. PubMed ID: 16084529 [Abstract] [Full Text] [Related]
17. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models. Srinivasan M. J R Soc Interface; 2011 Jan 06; 8(54):74-98. PubMed ID: 20542957 [Abstract] [Full Text] [Related]
18. Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Nyakatura JA, Fischer MS, Schmidt M. Am J Phys Anthropol; 2008 Jan 06; 135(1):13-26. PubMed ID: 17786994 [Abstract] [Full Text] [Related]
19. Constrained optimization in human walking: cost minimization and gait plasticity. Bertram JE. J Exp Biol; 2005 Mar 06; 208(Pt 6):979-91. PubMed ID: 15767300 [Abstract] [Full Text] [Related]
20. Models and the scaling of energy costs for locomotion. Alexander RM. J Exp Biol; 2005 May 06; 208(Pt 9):1645-52. PubMed ID: 15855396 [Abstract] [Full Text] [Related] Page: [Next] [New Search]