These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
302 related items for PubMed ID: 9281315
1. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs. Barber MJ, Trimboli AJ, Nomikos S, Smith ET. Arch Biochem Biophys; 1997 Sep 01; 345(1):88-96. PubMed ID: 9281315 [Abstract] [Full Text] [Related]
2. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase. Trimboli AJ, Quinn GB, Smith ET, Barber MJ. Arch Biochem Biophys; 1996 Jul 01; 331(1):117-26. PubMed ID: 8660690 [Abstract] [Full Text] [Related]
3. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. Quinn GB, Trimboli AJ, Prosser IM, Barber MJ. Arch Biochem Biophys; 1996 Mar 01; 327(1):151-60. PubMed ID: 8615685 [Abstract] [Full Text] [Related]
4. Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. Lu G, Lindqvist Y, Schneider G, Dwivedi U, Campbell W. J Mol Biol; 1995 May 19; 248(5):931-48. PubMed ID: 7760334 [Abstract] [Full Text] [Related]
5. Assimilatory nitrate reductase: lysine 741 participates in pyridine nucleotide binding via charge complementarity. Barber MJ, Desai SK, Marohnic CC. Arch Biochem Biophys; 2001 Oct 01; 394(1):99-110. PubMed ID: 11566032 [Abstract] [Full Text] [Related]
6. Cytochrome b5 reductase: role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis. Marohnic CC, Crowley LJ, Davis CA, Smith ET, Barber MJ. Biochemistry; 2005 Feb 22; 44(7):2449-61. PubMed ID: 15709757 [Abstract] [Full Text] [Related]
7. Assimilatory nitrate reductase: reduction and inhibition by NADH/NAD+ analogs. Trimboli AJ, Barber MJ. Arch Biochem Biophys; 1994 Nov 15; 315(1):48-53. PubMed ID: 7979404 [Abstract] [Full Text] [Related]
8. Studies of the redox properties of CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E1) and CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase reductase (E3): two important enzymes involved in the biosynthesis of ascarylose. Burns KD, Pieper PA, Liu HW, Stankovich MT. Biochemistry; 1996 Jun 18; 35(24):7879-89. PubMed ID: 8672489 [Abstract] [Full Text] [Related]
10. Association and redox properties of the putidaredoxin reductase-nicotinamide adenine dinucleotide complex. Reipa V, Holden MJ, Vilker VL. Biochemistry; 2007 Nov 13; 46(45):13235-44. PubMed ID: 17941648 [Abstract] [Full Text] [Related]
11. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains. Wolthers KR, Basran J, Munro AW, Scrutton NS. Biochemistry; 2003 Apr 08; 42(13):3911-20. PubMed ID: 12667082 [Abstract] [Full Text] [Related]
12. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
13. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Marohnic CC, Bewley MC, Barber MJ. Biochemistry; 2003 Sep 30; 42(38):11170-82. PubMed ID: 14503867 [Abstract] [Full Text] [Related]
14. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ, Scrutton NS, Munro AW. Biochem J; 2003 Jun 01; 372(Pt 2):317-27. PubMed ID: 12614197 [Abstract] [Full Text] [Related]
15. Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA. Biochemistry; 2004 Jan 27; 43(3):799-807. PubMed ID: 14730985 [Abstract] [Full Text] [Related]
17. Flavin adenine dinucleotide as precursor for NADH electrocatalyst. de-Los-Santos-Alvarez N, de-Los-Santos-Alvarez P, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. Anal Chem; 2005 Jul 01; 77(13):4286-9. PubMed ID: 15987139 [Abstract] [Full Text] [Related]
18. The structure of the S127P mutant of cytochrome b5 reductase that causes methemoglobinemia shows the AMP moiety of the flavin occupying the substrate binding site. Bewley MC, Davis CA, Marohnic CC, Taormina D, Barber MJ. Biochemistry; 2003 Nov 18; 42(45):13145-51. PubMed ID: 14609324 [Abstract] [Full Text] [Related]
19. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase. Olteanu H, Wolthers KR, Munro AW, Scrutton NS, Banerjee R. Biochemistry; 2004 Feb 24; 43(7):1988-97. PubMed ID: 14967039 [Abstract] [Full Text] [Related]
20. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair. Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G. Biochemistry; 2005 Oct 11; 44(40):13291-303. PubMed ID: 16201755 [Abstract] [Full Text] [Related] Page: [Next] [New Search]