These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
302 related items for PubMed ID: 9281315
41. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR, Duff JL, Heering HA, Duin EC, Albracht SP, Armstrong FA. Biochemistry; 1999 Jul 13; 38(28):8992-9. PubMed ID: 10413472 [Abstract] [Full Text] [Related]
42. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase. Yamamoto K, Kimura S, Shiro Y, Iyanagi T. Arch Biochem Biophys; 2005 Aug 01; 440(1):65-78. PubMed ID: 16009330 [Abstract] [Full Text] [Related]
43. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A. Wille G, Ritter M, Weiss MS, König S, Mäntele W, Hübner G. Biochemistry; 2005 Apr 05; 44(13):5086-94. PubMed ID: 15794646 [Abstract] [Full Text] [Related]
44. Partial purification and properties of the assimilatory nitrate reductase of the food yeast Candida utilis. Choudary PV, Deobagkar DN, Rao GR. Microbios; 1986 Apr 05; 47(192-193):135-47. PubMed ID: 3784922 [Abstract] [Full Text] [Related]
45. Mechanism of NAD(P)H:quinone reductase: Ab initio studies of reduced flavin. Cavelier G, Amzel LM. Proteins; 2001 Jun 01; 43(4):420-32. PubMed ID: 11340659 [Abstract] [Full Text] [Related]
46. Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog. Pollock VV, Conover RC, Johnson MK, Barber MJ. Arch Biochem Biophys; 2002 Jul 15; 403(2):237-48. PubMed ID: 12139973 [Abstract] [Full Text] [Related]
47. Arginine 91 is not essential for flavin incorporation in hepatic cytochrome b(5) reductase. Marohnic CC, Barber MJ. Arch Biochem Biophys; 2001 May 15; 389(2):223-33. PubMed ID: 11339812 [Abstract] [Full Text] [Related]
52. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Davis CA, Dhawan IK, Johnson MK, Barber MJ. Arch Biochem Biophys; 2002 Apr 01; 400(1):63-75. PubMed ID: 11913972 [Abstract] [Full Text] [Related]
54. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Gates AJ, Richardson DJ, Butt JN. Biochem J; 2008 Jan 01; 409(1):159-68. PubMed ID: 17900239 [Abstract] [Full Text] [Related]
55. Oxidation-reduction and transient kinetic studies of spinach ferredoxin-dependent glutamate synthase. Hirasawa M, Hurley JK, Salamon Z, Tollin G, Knaff DB. Arch Biochem Biophys; 1996 Jun 01; 330(1):209-15. PubMed ID: 8651698 [Abstract] [Full Text] [Related]
57. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH. de-los-Santos-Alvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P, Abruña HD. Anal Chem; 2005 Apr 15; 77(8):2624-31. PubMed ID: 15828802 [Abstract] [Full Text] [Related]
58. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. Blasco R, Castillo F, Martínez-Luque M. FEBS Lett; 1997 Sep 01; 414(1):45-9. PubMed ID: 9305729 [Abstract] [Full Text] [Related]