These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 9282834

  • 1. Identification of quinol thioethers in bone marrow of hydroquinone/phenol-treated rats and mice and their potential role in benzene-mediated hematotoxicity.
    Bratton SB, Lau SS, Monks TJ.
    Chem Res Toxicol; 1997 Aug; 10(8):859-65. PubMed ID: 9282834
    [Abstract] [Full Text] [Related]

  • 2. Role of hydroquinone-thiol conjugates in benzene-mediated toxicity.
    Lau SS, Kuhlman CL, Bratton SB, Monks TJ.
    Chem Biol Interact; 2010 Mar 19; 184(1-2):212-7. PubMed ID: 20034486
    [Abstract] [Full Text] [Related]

  • 3. Modulation of quinol/quinone-thioether toxicity by intramolecular detoxication.
    Monks TJ.
    Drug Metab Rev; 1995 Mar 19; 27(1-2):93-106. PubMed ID: 7641587
    [Abstract] [Full Text] [Related]

  • 4. Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2,3,5-(tris-glutathion-S-yl)hydroquinone.
    Peters MM, Jones TW, Monks TJ, Lau SS.
    Carcinogenesis; 1997 Dec 19; 18(12):2393-401. PubMed ID: 9450487
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity.
    Subrahmanyam VV, Doane-Setzer P, Steinmetz KL, Ross D, Smith MT.
    Toxicology; 1990 May 14; 62(1):107-16. PubMed ID: 2343455
    [Abstract] [Full Text] [Related]

  • 7. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone.
    Snyder R, Chepiga T, Yang CS, Thomas H, Platt K, Oesch F.
    Toxicol Appl Pharmacol; 1993 Oct 14; 122(2):172-81. PubMed ID: 8211999
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Immunochemical detection of quinol--thioether-derived protein adducts.
    Kleiner HE, Rivera MI, Pumford NR, Monks TJ, Lau SS.
    Chem Res Toxicol; 1998 Nov 14; 11(11):1283-90. PubMed ID: 9815188
    [Abstract] [Full Text] [Related]

  • 10. Identification of multi-S-substituted conjugates of hydroquinone by HPLC-coulometric electrode array analysis and mass spectroscopy.
    Hill BA, Kleiner HE, Ryan EA, Dulik DM, Monks TJ, Lau SS.
    Chem Res Toxicol; 1993 Nov 14; 6(4):459-69. PubMed ID: 8374043
    [Abstract] [Full Text] [Related]

  • 11. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure.
    Eastmond DA, Smith MT, Irons RD.
    Toxicol Appl Pharmacol; 1987 Oct 14; 91(1):85-95. PubMed ID: 2823417
    [Abstract] [Full Text] [Related]

  • 12. Glutathione conjugates of tert-butyl-hydroquinone, a metabolite of the urinary tract tumor promoter 3-tert-butyl-hydroxyanisole, are toxic to kidney and bladder.
    Peters MM, Rivera MI, Jones TW, Monks TJ, Lau SS.
    Cancer Res; 1996 Mar 01; 56(5):1006-11. PubMed ID: 8640754
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites.
    Ganousis LG, Goon D, Zyglewska T, Wu KK, Ross D.
    Mol Pharmacol; 1992 Dec 01; 42(6):1118-25. PubMed ID: 1480134
    [Abstract] [Full Text] [Related]

  • 15. Synergistic increase in chromosomal breakage within the euchromatin induced by an interaction of the benzene metabolites phenol and hydroquinone in mice.
    Chen H, Eastmond DA.
    Carcinogenesis; 1995 Aug 01; 16(8):1963-9. PubMed ID: 7543378
    [Abstract] [Full Text] [Related]

  • 16. Reactive oxygen species and DNA damage in 2-bromo-(glutathion-S-yl) hydroquinone-mediated cytotoxicity.
    Mertens JJ, Gibson NW, Lau SS, Monks TJ.
    Arch Biochem Biophys; 1995 Jun 20; 320(1):51-8. PubMed ID: 7793984
    [Abstract] [Full Text] [Related]

  • 17. Metabolism as a determinant of species susceptibility to 2,3,5-(triglutathion-S-yl)hydroquinone-mediated nephrotoxicity. The role of N-acetylation and N-deacetylation.
    Lau SS, Kleiner HE, Monks TJ.
    Drug Metab Dispos; 1995 Oct 20; 23(10):1136-42. PubMed ID: 8654203
    [Abstract] [Full Text] [Related]

  • 18. Studies on the mechanism of benzene toxicity.
    Snyder R, Dimitriadis E, Guy R, Hu P, Cooper K, Bauer H, Witz G, Goldstein BD.
    Environ Health Perspect; 1989 Jul 20; 82():31-5. PubMed ID: 2792049
    [Abstract] [Full Text] [Related]

  • 19. Oxidative cyclization, 1,4-benzothiazine formation and dimerization of 2-bromo-3-(glutathion-S-yl)hydroquinone.
    Monks TJ, Highet RJ, Lau SS.
    Mol Pharmacol; 1990 Jul 20; 38(1):121-7. PubMed ID: 1973524
    [Abstract] [Full Text] [Related]

  • 20. Glutathione and N-acetylcysteine conjugates of alpha-methyldopamine produce serotonergic neurotoxicity: possible role in methylenedioxyamphetamine-mediated neurotoxicity.
    Bai F, Lau SS, Monks TJ.
    Chem Res Toxicol; 1999 Dec 20; 12(12):1150-7. PubMed ID: 10604863
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.