These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
561 related items for PubMed ID: 9283086
1. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Ahmed SN, Brown DA, London E. Biochemistry; 1997 Sep 09; 36(36):10944-53. PubMed ID: 9283086 [Abstract] [Full Text] [Related]
2. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Massey JB, Pownall HJ. Biochemistry; 2005 Aug 02; 44(30):10423-33. PubMed ID: 16042420 [Abstract] [Full Text] [Related]
3. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA. J Biol Chem; 1998 Jan 09; 273(2):1150-7. PubMed ID: 9422781 [Abstract] [Full Text] [Related]
4. Shape changes and vesicle fission of giant unilamellar vesicles of liquid-ordered phase membrane induced by lysophosphatidylcholine. Tanaka T, Sano R, Yamashita Y, Yamazaki M. Langmuir; 2004 Oct 26; 20(22):9526-34. PubMed ID: 15491182 [Abstract] [Full Text] [Related]
5. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Ge M, Field KA, Aneja R, Holowka D, Baird B, Freed JH. Biophys J; 1999 Aug 26; 77(2):925-33. PubMed ID: 10423437 [Abstract] [Full Text] [Related]
6. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Aussenac F, Tavares M, Dufourc EJ. Biochemistry; 2003 Feb 18; 42(6):1383-90. PubMed ID: 12578350 [Abstract] [Full Text] [Related]
7. Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. Fastenberg ME, Shogomori H, Xu X, Brown DA, London E. Biochemistry; 2003 Oct 28; 42(42):12376-90. PubMed ID: 14567699 [Abstract] [Full Text] [Related]
8. The fluorescent cholesterol analog dehydroergosterol induces liquid-ordered domains in model membranes. Garvik O, Benediktson P, Simonsen AC, Ipsen JH, Wüstner D. Chem Phys Lipids; 2009 Jun 28; 159(2):114-8. PubMed ID: 19477318 [Abstract] [Full Text] [Related]
9. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. Sot J, Ibarguren M, Busto JV, Montes LR, Goñi FM, Alonso A. FEBS Lett; 2008 Sep 22; 582(21-22):3230-6. PubMed ID: 18755187 [Abstract] [Full Text] [Related]
10. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Wang J, Megha, London E. Biochemistry; 2004 Feb 03; 43(4):1010-8. PubMed ID: 14744146 [Abstract] [Full Text] [Related]
11. Phase separation is induced by phenothiazine derivatives in phospholipid/sphingomyelin/cholesterol mixtures containing low levels of cholesterol and sphingomyelin. Hendrich AB, Michalak K, Wesołowska O. Biophys Chem; 2007 Oct 03; 130(1-2):32-40. PubMed ID: 17662517 [Abstract] [Full Text] [Related]
12. A quantitative model describing the selective solubilization of membrane domains. Keller S, Tsamaloukas A, Heerklotz H. J Am Chem Soc; 2005 Aug 17; 127(32):11469-76. PubMed ID: 16089477 [Abstract] [Full Text] [Related]
13. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Brown DA, London E. Biochem Biophys Res Commun; 1997 Nov 07; 240(1):1-7. PubMed ID: 9367871 [Abstract] [Full Text] [Related]
14. Partitioning of dual-lipidated peptides into membrane microdomains: lipid sorting vs peptide aggregation. Janosch S, Nicolini C, Ludolph B, Peters C, Völkert M, Hazlet TL, Gratton E, Waldmann H, Winter R. J Am Chem Soc; 2004 Jun 23; 126(24):7496-503. PubMed ID: 15198596 [Abstract] [Full Text] [Related]
15. [Physical arrangement of membrane lipids susceptible to being used in the process of cell sorting of proteins]. Wolf C, Quinn P, Koumanov K, Chachaty C, Tenchov B. J Soc Biol; 1999 Jun 23; 193(2):117-23. PubMed ID: 10451343 [Abstract] [Full Text] [Related]
16. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Pathak P, London E. Biophys J; 2011 Nov 16; 101(10):2417-25. PubMed ID: 22098740 [Abstract] [Full Text] [Related]
17. Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Wang TY, Silvius JR. Biophys J; 2003 Jan 16; 84(1):367-78. PubMed ID: 12524290 [Abstract] [Full Text] [Related]
18. X-ray grazing incidence diffraction and Langmuir monolayer studies of the interaction of beta-cyclodextrin with model lipid membranes. Flasiński M, Broniatowski M, Majewski J, Dynarowicz-Łatka P. J Colloid Interface Sci; 2010 Aug 15; 348(2):511-21. PubMed ID: 20493495 [Abstract] [Full Text] [Related]
19. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Sot J, Bagatolli LA, Goñi FM, Alonso A. Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266 [Abstract] [Full Text] [Related]
20. Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Ferraretto A, Pitto M, Palestini P, Masserini M. Biochemistry; 1997 Jul 29; 36(30):9232-6. PubMed ID: 9230056 [Abstract] [Full Text] [Related] Page: [Next] [New Search]