These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 9284272

  • 21. Involvement of K+ channel permeability changes in the L-NAME and indomethacin resistant part of adenosine-5'-O-(2-thiodiphosphate)-induced relaxation of pancreatic vascular bed.
    Hillaire-Buys D, Chapal J, Linck N, Blayac JP, Petit P, Loubatières-Mariani MM.
    Br J Pharmacol; 1998 May; 124(1):149-56. PubMed ID: 9630354
    [Abstract] [Full Text] [Related]

  • 22. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H, Waldron GJ, Cole WC, Triggle CR.
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [Abstract] [Full Text] [Related]

  • 23. Glibenclamide inhibits hypoxic relaxation of isolated porcine coronary arteries under conditions of impaired glycolysis.
    Mellemkjaer S, Nielsen-Kudsk JE.
    Eur J Pharmacol; 1994 Aug 03; 270(4):307-12. PubMed ID: 7805779
    [Abstract] [Full Text] [Related]

  • 24. KRN2391: dual action on rat pulmonary artery and no loss of potency in pulmonary hypertension.
    Wanstall JC, Gambino A, Thomas BJ.
    Clin Exp Pharmacol Physiol; 2000 Apr 03; 27(4):288-94. PubMed ID: 10779127
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP-channels.
    Liu Q, Flavahan NA.
    Br J Pharmacol; 1997 Feb 03; 120(4):728-34. PubMed ID: 9051315
    [Abstract] [Full Text] [Related]

  • 27. Histamine-induced relaxation in pulmonary artery of normotensive and hypertensive rats: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Török J.
    Physiol Res; 2000 Feb 03; 49(1):107-14. PubMed ID: 10805411
    [Abstract] [Full Text] [Related]

  • 28. Isoflurane pretreatment preserves adenosine triphosphate-sensitive K(+) channel function in the human artery exposed to oxidative stress caused by high glucose levels.
    Kinoshita H, Matsuda N, Iranami H, Ogawa K, Hatakeyama N, Azma T, Kawahito S, Yamazaki M.
    Anesth Analg; 2012 Jul 03; 115(1):54-61. PubMed ID: 22467893
    [Abstract] [Full Text] [Related]

  • 29. K+ channel blockers do not modify relaxation of guinea-pig uterine artery evoked by acetylcholine.
    Jovanović A, Grbović L, Jovanović S.
    Eur J Pharmacol; 1995 Jun 23; 280(1):95-100. PubMed ID: 7498259
    [Abstract] [Full Text] [Related]

  • 30. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes.
    Teramoto N, McMurray G, Brading AF.
    Br J Pharmacol; 1997 Apr 23; 120(7):1229-40. PubMed ID: 9105697
    [Abstract] [Full Text] [Related]

  • 31. Relative significance of the nitric oxide (NO)/cGMP pathway and K+ channel activation in endothelium-dependent vasodilation in the femoral artery of developing piglets.
    Støen R, Lossius K, Persson AA, Karlsson JO.
    Acta Physiol Scand; 2001 Jan 23; 171(1):29-35. PubMed ID: 11350260
    [Abstract] [Full Text] [Related]

  • 32. Enhanced prostanoid-mediated vasorelaxation in pulmonary arteries isolated during experimental endotoxemia.
    Myers TP, Myers PR, Adams HR, Parker JL.
    Shock; 1999 Jun 23; 11(6):436-42. PubMed ID: 10454834
    [Abstract] [Full Text] [Related]

  • 33. Hemodynamic effects of levcromakalim in neonatal porcine pulmonary hypertension.
    Ambalavanan N, Bulger A, Ware J, Philips J.
    Biol Neonate; 2001 Jul 23; 80(1):74-80. PubMed ID: 11474154
    [Abstract] [Full Text] [Related]

  • 34. Role of K+ channels in A2A adenosine receptor-mediated dilation of the pressurized renal arcuate artery.
    Prior HM, Yates MS, Beech DJ.
    Br J Pharmacol; 1999 Jan 23; 126(2):494-500. PubMed ID: 10077243
    [Abstract] [Full Text] [Related]

  • 35. Characterization of the potassium channels involved in EDHF-mediated relaxation in cerebral arteries.
    Petersson J, Zygmunt PM, Högestätt ED.
    Br J Pharmacol; 1997 Apr 23; 120(7):1344-50. PubMed ID: 9105711
    [Abstract] [Full Text] [Related]

  • 36. Maturation of the response to bradykinin in resistance and conduit pulmonary arteries.
    Boels PJ, Deutsch J, Gao B, Haworth SG.
    Cardiovasc Res; 1999 Nov 23; 44(2):416-28. PubMed ID: 10690318
    [Abstract] [Full Text] [Related]

  • 37. Chronic hypoxia inhibits postnatal maturation of porcine intrapulmonary artery relaxation.
    Tulloh RM, Hislop AA, Boels PJ, Deutsch J, Haworth SG.
    Am J Physiol; 1997 May 23; 272(5 Pt 2):H2436-45. PubMed ID: 9176315
    [Abstract] [Full Text] [Related]

  • 38. Perinatal development influences mechanisms of bradykinin-induced relaxations in pulmonary resistance and conduit arteries differently.
    Boels PJ, Deutsch J, Gao B, Haworth SG.
    Cardiovasc Res; 2001 Jul 23; 51(1):140-50. PubMed ID: 11399256
    [Abstract] [Full Text] [Related]

  • 39. Vasodilatation of intrapulmonary arteries to P2-receptor nucleotides in normal and pulmonary hypertensive newborn piglets.
    McMillan MR, Burnstock G, Haworth SG.
    Br J Pharmacol; 1999 Oct 23; 128(3):543-8. PubMed ID: 10516630
    [Abstract] [Full Text] [Related]

  • 40. Endothelial mechanisms underlying responses to acetylcholine in the horse deep dorsal penile vein.
    Martínez AC, Prieto D, Hernández M, Rivera L, Recio P, García-Sacristán A, Benedito S.
    Eur J Pharmacol; 2005 May 16; 515(1-3):150-9. PubMed ID: 15894308
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.