These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
356 related items for PubMed ID: 9286698
1. Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p. Shiels C, Coutelle C, Huxley C. Genomics; 1997 Aug 15; 44(1):35-44. PubMed ID: 9286698 [Abstract] [Full Text] [Related]
2. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization]. Solov'ev IV, Iurov IuB, Vorsanova SG, Marcais B, Rogaev EI, Kapanadze BI, Brodianskiĭ VM, Iankovskiĭ NK, Roizes G. Genetika; 1998 Nov 15; 34(11):1470-9. PubMed ID: 10096024 [Abstract] [Full Text] [Related]
3. The organisation of repetitive sequences in the pericentromeric region of human chromosome 10. Jackson MS, Slijepcevic P, Ponder BA. Nucleic Acids Res; 1993 Dec 25; 21(25):5865-74. PubMed ID: 8290346 [Abstract] [Full Text] [Related]
4. Genetic and physical analyses of the centromeric and pericentromeric regions of human chromosome 5: recombination across 5cen. Puechberty J, Laurent AM, Gimenez S, Billault A, Brun-Laurent ME, Calenda A, Marçais B, Prades C, Ioannou P, Yurov Y, Roizès G. Genomics; 1999 Mar 15; 56(3):274-87. PubMed ID: 10087194 [Abstract] [Full Text] [Related]
5. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM. Genetica; 2006 May 15; 127(1-3):133-41. PubMed ID: 16850219 [Abstract] [Full Text] [Related]
6. Analysis of alphoid DNA variation and kinetochore size in human chromosome 21: evidence against pathological significance of alphoid satellite DNA diminutions. Marzais B, Vorsanova SG, Roizes G, Yurov YB. Tsitol Genet; 1999 May 15; 33(1):25-31. PubMed ID: 10330695 [Abstract] [Full Text] [Related]
8. Pericentromeric heteromorphism of human chromosome 18 as revealed by FISH-technique. Verma RS, Ishwar L, Gogineni SK, Kleyman SM. Ann Genet; 1998 May 15; 41(3):154-6. PubMed ID: 9833069 [Abstract] [Full Text] [Related]
9. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nilsson M, Krejci K, Koch J, Kwiatkowski M, Gustavsson P, Landegren U. Nat Genet; 1997 Jul 15; 16(3):252-5. PubMed ID: 9207789 [Abstract] [Full Text] [Related]
10. Structural rearrangements and insertions of dispersed elements in pericentromeric alpha satellites occur preferably at kinkable DNA sites. Mashkova TD, Oparina NY, Lacroix MH, Fedorova LI, G Tumeneva I, Zinovieva OL, Kisselev LL. J Mol Biol; 2001 Jan 05; 305(1):33-48. PubMed ID: 11114245 [Abstract] [Full Text] [Related]
11. [Acquisition of the sequence of a new subclass of human alpha- satellite DNA, localized in the centromere regions of two pairs of acrocentric chromosomes]. Gar'kavtsev IV, Tsvetkov TG, Shilova NV, Raevskaia GV. Mol Gen Mikrobiol Virusol; 1989 Jun 05; (6):25-9. PubMed ID: 2811898 [Abstract] [Full Text] [Related]
12. Centromeric alpha-satellite DNA break in reciprocal translocations. Wang JC, Hajianpour A, Habibian R. Cytogenet Genome Res; 2009 Jun 05; 125(4):329-33. PubMed ID: 19864896 [Abstract] [Full Text] [Related]
13. Isolation, cloning and characterization of two major satellite DNA families of rabbit (Oryctolagus cuniculus). Ekes C, Csonka E, Hadlaczky G, Cserpán I. Gene; 2004 Dec 22; 343(2):271-9. PubMed ID: 15588582 [Abstract] [Full Text] [Related]
14. A chromosome 13-specific human satellite I DNA subfamily with minor presence on chromosome 21: further studies on Robertsonian translocations. Kalitsis P, Earle E, Vissel B, Shaffer LG, Choo KH. Genomics; 1993 Apr 22; 16(1):104-12. PubMed ID: 8486347 [Abstract] [Full Text] [Related]
15. Family with 22-derived marker chromosome and late-onset dementia of the Alzheimer type: II. Further cytogenetic analysis of the marker and characterization of the high-level repeat sequences using fluorescence in situ hybridization. Percy ME, Dearie TG, Jabs EW, Bauer SJ, Chodakowski B, Somerville MJ, Lennox A, McLachlan DR, Baldini A, Miller DA. Am J Med Genet; 1993 Aug 01; 47(1):14-9. PubMed ID: 7690182 [Abstract] [Full Text] [Related]
16. Physical relationship between satellite I and II DNA in centromeric regions of sheep chromosomes. D'Aiuto L, Barsanti P, Mauro S, Cserpan I, Lanave C, Ciccarese S. Chromosome Res; 1997 Sep 01; 5(6):375-81. PubMed ID: 9364939 [Abstract] [Full Text] [Related]
17. Structure of the sequences adjacent to the centromeric alphoid satellite DNA array on the human Y chromosome. Cooper KF, Fisher RB, Tyler-Smith C. J Mol Biol; 1993 Apr 05; 230(3):787-99. PubMed ID: 8478934 [Abstract] [Full Text] [Related]
18. [Interindividual hyperpolymorphism of autosomal satellites III of human DNA]. Rogaev EI, Iurov IuB. Genetika; 1990 Aug 05; 26(8):1532-5. PubMed ID: 1979546 [Abstract] [Full Text] [Related]
19. Fluorescence in situ hybridization (FISH) of a whole-arm translocation involving chromosomes 18 and 20 with alpha-satellite DNA probes: detection of a centromeric DNA break? Cantú ES, Khan TA, Pai GS. Am J Med Genet; 1992 Oct 01; 44(3):340-4. PubMed ID: 1488982 [Abstract] [Full Text] [Related]
20. A 9.75-Mb map across the centromere of human chromosome 10. Jackson MS, See CG, Mulligan LM, Lauffart BF. Genomics; 1996 Apr 15; 33(2):258-70. PubMed ID: 8660974 [Abstract] [Full Text] [Related] Page: [Next] [New Search]