These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Positive regulation of Bacillus subtilis sigD by C-terminal truncated LacR at translational level. Ogura M, Hirao S, Ohshiro Y, Tanaka T. FEBS Lett; 1999 Aug 20; 457(1):112-6. PubMed ID: 10486575 [Abstract] [Full Text] [Related]
5. Repression and catabolite repression of the lactose operon of Staphylococcus aureus. Oskouian B, Stewart GC. J Bacteriol; 1990 Jul 20; 172(7):3804-12. PubMed ID: 2163387 [Abstract] [Full Text] [Related]
6. Effect of mutations to amino acid A301 and F361 in thermostability and catalytic activity of the β-galactosidase from Bacillus subtilis VTCC-DVN-12-01. Nguyen TT, Vu HV, Nguyen NT, Do TT, Nguyen TS. BMC Biochem; 2016 Jul 08; 17(1):15. PubMed ID: 27393145 [Abstract] [Full Text] [Related]
7. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. Yuan G, Wong SL. J Bacteriol; 1995 Nov 08; 177(22):6462-8. PubMed ID: 7592421 [Abstract] [Full Text] [Related]
8. Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase. Sun D, Setlow P. J Bacteriol; 1993 May 08; 175(9):2501-6. PubMed ID: 8478318 [Abstract] [Full Text] [Related]
9. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. Puri-Taneja A, Schau M, Chen Y, Hulett FM. J Bacteriol; 2007 May 08; 189(9):3348-58. PubMed ID: 17322317 [Abstract] [Full Text] [Related]
12. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. Bower S, Perkins J, Yocum RR, Serror P, Sorokin A, Rahaim P, Howitt CL, Prasad N, Ehrlich SD, Pero J. J Bacteriol; 1995 May 08; 177(9):2572-5. PubMed ID: 7730294 [Abstract] [Full Text] [Related]
13. Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. Mason JM, Hackett RH, Setlow P. J Bacteriol; 1988 Jan 08; 170(1):239-44. PubMed ID: 3121585 [Abstract] [Full Text] [Related]
14. The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli. Bussey LB, Switzer RL. J Bacteriol; 1993 Oct 08; 175(19):6348-53. PubMed ID: 8407808 [Abstract] [Full Text] [Related]
15. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Débarbouillé M, Martin-Verstraete I, Kunst F, Rapoport G. Proc Natl Acad Sci U S A; 1991 Oct 15; 88(20):9092-6. PubMed ID: 1924373 [Abstract] [Full Text] [Related]
17. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Débarbouillé M, Martin-Verstraete I, Klier A, Rapoport G. Proc Natl Acad Sci U S A; 1991 Mar 15; 88(6):2212-6. PubMed ID: 1900939 [Abstract] [Full Text] [Related]
20. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Perkins JB, Youngman PJ. Proc Natl Acad Sci U S A; 1986 Jan 15; 83(1):140-4. PubMed ID: 3001720 [Abstract] [Full Text] [Related] Page: [Next] [New Search]