These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
309 related items for PubMed ID: 9306276
1. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line. Sheppard DN, Robinson KA. J Physiol; 1997 Sep 01; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276 [Abstract] [Full Text] [Related]
2. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents. Cai Z, Lansdell KA, Sheppard DN. Br J Pharmacol; 1999 Sep 01; 128(1):108-18. PubMed ID: 10498841 [Abstract] [Full Text] [Related]
3. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line. Lansdell KA, Cai Z, Kidd JF, Sheppard DN. J Physiol; 2000 Apr 15; 524 Pt 2(Pt 2):317-30. PubMed ID: 10766914 [Abstract] [Full Text] [Related]
4. Probing an open CFTR pore with organic anion blockers. Zhou Z, Hu S, Hwang TC. J Gen Physiol; 2002 Nov 15; 120(5):647-62. PubMed ID: 12407077 [Abstract] [Full Text] [Related]
5. Inhibitory effects of glibenclamide on cystic fibrosis transmembrane regulator, swelling-activated, and Ca(2+)-activated Cl- channels in mammalian cardiac myocytes. Yamazaki J, Hume JR. Circ Res; 1997 Jul 15; 81(1):101-9. PubMed ID: 9201033 [Abstract] [Full Text] [Related]
6. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in mammalian cells. Lansdell KA, Delaney SJ, Lunn DP, Thomson SA, Sheppard DN, Wainwright BJ. J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):379-92. PubMed ID: 9508803 [Abstract] [Full Text] [Related]
7. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells. Julien M, Verrier B, Cerutti M, Chappe V, Gola M, Devauchelle G, Becq F. J Membr Biol; 1999 Apr 01; 168(3):229-39. PubMed ID: 10191357 [Abstract] [Full Text] [Related]
8. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes. Larsen EH, Price EM, Gabriel SE, Stutts MJ, Boucher RC. Pflugers Arch; 1996 Jul 01; 432(3):528-37. PubMed ID: 8766014 [Abstract] [Full Text] [Related]
9. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms. Cai Z, Li H, Chen JH, Sheppard DN. Am J Physiol Cell Physiol; 2013 Oct 15; 305(8):C817-28. PubMed ID: 23784545 [Abstract] [Full Text] [Related]
10. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Gupta J, Linsdell P. Pflugers Arch; 2002 Mar 15; 443(5-6):739-47. PubMed ID: 11889571 [Abstract] [Full Text] [Related]
11. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid. Scott-Ward TS, Li H, Schmidt A, Cai Z, Sheppard DN. Mol Membr Biol; 2004 Mar 15; 21(1):27-38. PubMed ID: 14668136 [Abstract] [Full Text] [Related]
12. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism. Spirlì C, Fiorotto R, Song L, Santos-Sacchi J, Okolicsanyi L, Masier S, Rocchi L, Vairetti MP, De Bernard M, Melero S, Pozzan T, Strazzabosco M. Gastroenterology; 2005 Jul 15; 129(1):220-33. PubMed ID: 16012949 [Abstract] [Full Text] [Related]
13. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. Sheppard DN, Welsh MJ. J Gen Physiol; 1992 Oct 15; 100(4):573-91. PubMed ID: 1281220 [Abstract] [Full Text] [Related]
14. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1. Ishida-Takahashi A, Otani H, Takahashi C, Washizuka T, Tsuji K, Noda M, Horie M, Sasayama S. J Physiol; 1998 Apr 01; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811 [Abstract] [Full Text] [Related]
15. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Linsdell P. J Biol Chem; 2005 Mar 11; 280(10):8945-50. PubMed ID: 15634668 [Abstract] [Full Text] [Related]
16. Activation of cAMP-dependent C1- currents in guinea-pig paneth cells without relevant evidence for CFTR expression. Tsumura T, Hazama A, Miyoshi T, Ueda S, Okada Y. J Physiol; 1998 Nov 01; 512 ( Pt 3)(Pt 3):765-77. PubMed ID: 9769420 [Abstract] [Full Text] [Related]
18. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore. Zhang ZR, Zeltwanger S, McCarty NA. J Membr Biol; 2004 May 01; 199(1):15-28. PubMed ID: 15366420 [Abstract] [Full Text] [Related]
19. Cl- channel inhibition by glibenclamide is not specific for the CFTR-type Cl- channel. Rabe A, Disser J, Frömter E. Pflugers Arch; 1995 Mar 01; 429(5):659-62. PubMed ID: 7540745 [Abstract] [Full Text] [Related]
20. Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl- channels activated by cyclic AMP. Sørensen JB, Larsen EH. J Gen Physiol; 1998 Jul 01; 112(1):19-31. PubMed ID: 9649581 [Abstract] [Full Text] [Related] Page: [Next] [New Search]